Oligonucleotide Analogues with Integrated Bases and Backbone

Part 27

Synthesis and Association of Thiomethylene-Linked Cytidine-Derived Dinucleosides and Tetranucleosides

by Lorenz Herdeis^a), Bruno Bernet^a), Anu Augustine^a), Roland E. Kälin^b), André W. Brändli^b)¹), and Andrea Vasella*^a)

a) Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

The (chloromethyl)cytidine **7** was obtained from alcohol **4** that was synthesized from the protected cytidine **3** by C(6)-formylation and reduction. Thioacetate **10** was obtained from the cytidine **2**, and thioacetate **8** from a *Mitsunobu* reaction of alcohol **6**. The thiomethylene-linked dinucleoside **11** was synthesized by thioether formation between the 6-(chloromethyl)cytidine **7** and the thiolate generated by *S*-deacetylating and *N*-debenzoylating the cytidine-5'-thioacetate **10**. Dinucleoside **11** was desilylated to **12**, and fully deprotected to **13**. Similarly to **11**, the C(6)-substituted analogue **14** was obtained from **7** and the C(6)-substituted **8**. Stepwise deprotection of **14** provided **15** – **17**, and complete deprotection gave **18**. The thioacetylated and *N*-benzoylated dinucleoside **21** was obtained from the methanesulfonate **9** and the thiolate that was generated from thioacetate **8**. Similarly, **7** and **8** yielded **19** that was transformed into the methanesulfonate **20**. The tetranucleoside **23** was synthesized from the methanesulfonate **20** and the thiol derived from **21**. It was debenzoylated to **23** and completely deprotected to **24**.

The partially protected dinucleosides **11**, **14**, and **15**, and the tetranucleoside **23** pair strongly in CDCl₃. The crystal structure of **11** MeOH shows the formation of an antiparallel cyclic duplex possessing nearly orthogonal base pairs due to MeOH acting as H-acceptor from one base pair and H-donor to the other base pair. A large distance of ca. 6 Å between the base pairs of the cyclic duplexes was predicted by Maruzen modeling. It is corroborated by the absence of base stacking in CHCl₃ solution of the duplexes formed by the (self-complementary) dinucleosides **11**, **14**, and **15**, as evidenced by a weak temperature dependence of the CD spectra. The association constants for **11**, **14**, **15**, and **23** were calculated from the concentration dependence of the chemical shift of $H_2N-C(4)$. No concentration dependence of the $H_2N-C(4)$ signals was observed for solutions of **23** in CDCl₃, (D₆)acetone, CD₃CN, (D₈)THF, (D₅)pyridine, and CDCl₃/(D₆)DMSO 4:1. As a consequence of the strong association, the association constant for **23** had to be determined in CD₃CN/(D₆)DMSO 4:1. The temperature dependence of the CD spectra of the fully deprotected **18** und **24**, but not of **13**, in H_2O is rationalized by base stacking of the hydroxymethylated cytosine moieties that associate by intermolecular H-bonds of $HOCH_2-C(6/I)$ to an acceptor of unit I. The ¹H-NMR spectrum of **18** and **24**, but not of **13**, shows a 9:1 mixture of the monoplex and the base-stacked duplex.

Introduction. – We have described a novel type of oligoribonucleotide analogues (ONIBs)²) that possess linking elements between nucleobases instead of a contiguous

b) Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich

Present address: Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.

²⁾ Abbreviation of the originally suggested term 'OligoNucleotides Integrating Backbone and bases'.

backbone. Non-self-complementary and self-complementary partially protected thiomethylene-linked dinucleosides [1], self-complementary ethynylene- [2], ethenylene-[3], oxymethylene- [1][4], aminomethylene- [5][6], sulfonyl- and sulfinylmethylenelinked [7] dinucleosides pair in CDCl₃ by forming Watson-Crick- and/or Hoogsteentype H-bonds between the nucleobases. Temperature-dependent CD spectra evidence that formation of these H-bonds is accompanied by base stacking. The structure of the duplexes possessing oxymethylene, thiomethylene, or ethynylene linkers was analyzed [8]. The syn-conformation (strongly favoured by substitution at C(6) of uridine and C(8) of adenosine) was always required for pairing, i.e., for the formation of cyclic duplexes. The thiomethylene-linked, partially protected ONIBs are particularly attractive. They pair well, adopting a gt conformation about the C(4')–C(5') bond in unit I (see 1 for the numbering of the units), and are most readily accessible [1]. The strongest pairing (in CDCl₃) is shown by the thiomethylene-linked U*[s]A*3) dinucleoside 1 ($K_{ass} = 2.8 \cdot 10^4 \,\mathrm{m}^{-1}$). More recently, the pairing of a partially protected uridine- and adenosine-derived self-complementary thiomethylene-linked tetranucleoside and the structure of the duplex have been analysed by a detailed NMR study [9]. Unfortunately, the fully deprotected thiomethylene-linked uridine- and adenosinederived tetranucleosides are poorly soluble in H_2O . This poor solubility did not allow determination of their pairing in H₂O, and is a significant disadvantage for investigating their biological properties.

So far, we only synthesised adenosine- and uridine-derived nucleosides. It is to be expected that cytidine- and guanosine-derived analogues pair more strongly, as they involve three rather than two H-bonds in a base pair. Interest in cytidine- and guanosine-derived analogues, and the prospect that their polar character would lead to a higher solubility in H_2O prompted us to prepare and analyse their structure and properties, beginning with cytidine-derived $C^*[s]C^{(*)}$ dinucleosides and $C^*[s]C^*[s]C^*[s]C^*$ tetranucleosides.

Results and Discussion. – Synthesis of $C^*[s]C^{(*)}$ Dinucleosides and $C^*[s]C^*[s]C^*[s]C^*$ Tetranucleosides. We considered two ways to $C^*[s]C^{(*)}$ dinucleo-

³) Conventions for abbreviated notation: The substitution at C(6) of pyrimidines and C(8) of purines is denoted by an asterisk (*); for example, U* and A* for hydroxymethylated uridine and adenosine derivatives, respectively. $U^{(*)}$ and $A^{(*)}$ represent both unsubstituted and hydroxymethylated nucleobases. The moiety linking $C(6)CH_2$ or $C(8)CH_2$ of unit II, and C(5') of unit I is indicated in square brackets, *i.e.*, [s] for a S-atom.

sides, viz. the transformation of U*[s]U* dinucleosides [10] and thioether formation between cytidine mononucleosides. We initially prepared the C*[s]C* dinucleoside **14** (*cf. Scheme* 2) by substitution of the bis(O^4 -o-nitrophenyl) ether of the corresponding U*[s]U* dinucleoside by NH₃ in MeOH, but obtained better results by thioether formation between protected cytidine monomers, as discussed below.

The electrophilic mononucleosides **7** and **9**, required for the synthesis of the thioethers, were obtained from the intermediate alcohol **4** that was readily prepared from the known 4-*N*-benzoyl-2',3'-*O*-isopropylidenecytidine (**2**) [11] (*Scheme 1*).

 $TDS = Thexyl(dimethyl)silyl \quad (= dimethyl(1,1,2-trimethylpropyl)silyl), \quad MMTr = (monomethoxy)trityl \\ (= (4-methoxyphenyl)(diphenyl)methyl). a) \quad TDSCl, 1H-imidazole, DMF; 91%. b) 1. Lithium diisopropylamide (LDA), <math>-78^{\circ}$, THF, then DMF; 2. AcOH; 3. NaBH₄, EtOH; 86%. c) MMTrCl, ${}^{1}Pr_{2}NEt$, 4-(dimethylamino)pyridine (DMAP), $CH_{2}Cl_{2}$; 87%. d) (HF) $_{3}$ · NEt $_{3}$, THF; 93%. e) Ms₂O, ${}^{1}Pr_{2}NEt$, CH₂Cl₂, addition of LiCl in DMF; 80%. f) PPh₃, diisopropyl azodicarboxylate (DIAD), AcSH, THF; 99%. g) 1. Cl₂CHCO₂H, CH₂Cl₂, ${}^{1}Pr_{3}SiH$; 2. Ms₂O, ${}^{1}Pr_{2}NEt$, CH₂Cl₂; 69%. h) 1. NaH, 1-tosyl-1\$H-imidazole, THF; 2. AcSK, DMF; 69%.

Protection of OH at C(5') by standard silylation [12] gave the thexyl(dimethyl)silyl ether **3**. Deprotonation of **3** with excess LDA [13], followed by the addition of DMF, hydrolysis, and reduction of the resulting aldehyde, yielded 86% of the hydroxymethylated cytidine **4**. To obtain **9** from this common intermediate, we monomethoxytritylated **4** to yield 87% of **5** that was desilylated [14] to **6**. Substitution of this alcohol with AcSH under *Mitsunobu* conditions [15] resulted in the C(5')-S-acetate **8**. It was

detritylated [16] and directly transformed to the methanesulfonate $\mathbf{9}$, which possesses an electrophilic and a protected nucleophilic site, as it is required for the synthesis of longer oligonucleosides. Chloro derivative $\mathbf{7}$ was obtained in a yield of 80% by mesylation of $\mathbf{4}$, followed by treatment with LiCl. The C(5')-S-acetate $\mathbf{10}$, which acts as protected nucleophile, was prepared by substitution with excess AcSK of the crude C(5')-p-toluenesulfonate obtained from $\mathbf{2}$.

Exposing the thioacetates **8** and **10** to NH₃ or K_2CO_3 in MeOH [17] led both to the desired S-deacetylation and N-debenzoylation (Scheme 2). This was immediately followed by the addition of **7** to yield the $C^*[s]C^{(*)}$ dinucleosides **11** (93%) and **14** (62%), respectively. Desilylation of these dinucleosides with (HF)₃·NEt₃ in THF led to the corresponding alcohols **12** (94%) and **15** (88%), while detritylation of **14** yielded the silyl ether **16** (83%) that was desilylated to diol **17** (95%). Finally, treating **11** with 50% aqueous CF₃COOH yielded the unprotected C*[s]C dinucleoside **13** (86%). Similarly, **14** was transformed by treatment with ${}^{i}Pr_3SiH$ in aqueous CF₃COOH to the unprotected C*[s]C* **18** (75%).

To synthesise the protected $C^*[s]C^*[s]C^*[s]C^*$ tetranucleoside **22**, we treated thioacetate **8** with MeSNa in THF/MeOH 1:1 at -10° [18]. These conditions led to *S*-deacetylation without concomitant *N*-debenzoylation (*Scheme 3*). The crude deacetylation product reacted with the chloromethylated **7** in the presence of $C^*s_2CO_3$ in DMF to yield 60% of the protected dinucleoside **19**, and, similarly, with the methanesulfonate **9** to yield 62% of **21**. Detritylation of **19** and reaction of the crude alcohol with C^*P_1 Detripolation of C^*P_2 Detripolated the methanesulfonate **20** (79%). Similarly to the mononucleoside **8**, dinucleoside **21** was deacetylated by treatment with MeSNa in THF/MeOH 1:1. Addition of **20** to the resulting crude thiolate yielded 51% of **22**. *N*-Debenzoylation of **22** with a saturated solution of NH₃ in MeOH/CH₂Cl₂ gave tetranucleoside **23** (77%) that was fully deprotected to the H₂O-soluble tetranucleoside **24** (69%) by treatment with C^*P_1 Pr₃SiH in 80% aqueous HCOOH.

Conformation of the Cytidine Monomers. As expected by comparison to analogous uridine derivatives [1][2][19], the C(6)-unsubstituted cytidine derivative **3** adopts an anti-conformation, evidenced by the chemical shift of H–C(2') resonating at 4.76 ppm (see Table 4 in the Exper. Part). The small J(4',5'a) and J(4',5'b) values (2.5 and 3.6 Hz, resp.) evidence a predominant gg-conformation (gg/gt/tg 74:22:4; calculated according to [1]). Similarly to the C(6)-unsubstituted uridine C(5')-S-acetate [1], the cytidine C(5')-S-acetate **10** exists as a mixture of (mostly) syn- and anti-conformers, as evidenced by the downfield shift for H–C(2'), resonating at 5.13 ppm, and a distinctly lower population of the gg-conformer (gg/gt/tg 10:44:46; cf. Table 4 in the Exper. Part). The thioacetate **10** shows a stronger preference for the (N)-conformation than the silyl ether **3** (J(1',2')/J(3',4') of 0.4 vs. 0.7).

The chemical shift (5.30-5.36 ppm) for H-C(2') of the C(6)-substituted cytidines $\mathbf{4-9}$ confirms the syn-conformation. The thioacetates $\mathbf{8}$ and $\mathbf{9}$ prefer exclusively a gt/tg-conformation (J(4',5'a)+J(4',5'b)=14.0-14.4 Hz), whereas $\mathbf{4}$, $\mathbf{5}$, and $\mathbf{7}$ (J(4',5'a)+J(4',5'b)=12.5-12.8 Hz) populate also the gg-conformation, if only to a small extent (ca.5-10%). The conformation of the CH_2OH group of $\mathbf{6}$ could not be determined in detail, as the signals of $H_a-C(5')$, $H_b-C(5')$, and HO-C(5') overlap. Similarly to the analogous C(6)-substituted uridine derivatives [1], $\mathbf{3-5}$ and $\mathbf{7-9}$ show a stronger preference for the (N)-conformer than alcohol $\mathbf{6}$ (J(1',2')/J(3',4')) of $0.25 \ vs. 0.6)$.

Scheme 2

a) NH₃, MeOH; 93%. *b*) (HF)₃·NEt₃, THF; 94% of **12**; 88% of **15**; 95% of **17**. *c*) CF₃CO₂H/H₂O 1:1; 86%. *d*) K₂CO₃, MeOH; 62%. *e*) Cl₂CHCO₂H, [†]Pr₃SiH, CH₂Cl₂; 83%. *f*) [†]Pr₃SiH, CF₃CO₂H/H₂O 1:1; 75%

The benzoates **2**–**9** show broad 1 H-NMR signals for H–C(5), and broad 13 C-NMR signals at *ca.* 96, 155, and 166 ppm. This evidences an equilibrium between the benzamide **T1** (weak C(5)–H···O=C H-bond) and its imino tautomer **T2** (strong N(3)–H···O=C H-bond), which is exclusively observed for 5-substituted cytidines [20]

Scheme 3

a) 1. **8**, MeSNa, MeOH/THF 1:1, -10°; 2. **7** or **9**, LiBr, Cs₂CO₃, DMF; 60% of **19**; 62% of **21**. *b*) 1. Cl₂CHCO₂H, ⁱPr₃SiH, CH₂Cl₂; 2. Ms₂O, ⁱPr₂NEt, CH₂Cl₂; 79%. *c*) Analogous to *a*, with **21** and **20**; 51%. *d*) NH₃, MeOH/CH₂Cl₂; 77%. *e*) ⁱPr₃SiH, HCO₂H/H₂O 4:1; 69%.

(Scheme 4). For the **T1** and **T2** isomers, the 13 C-NMR data of Herdewijn and coworkers [20] evidence large $\Delta\delta$ values for C(2) (7 ppm), C(5) (8 ppm), and the C=O group of the benzoyl moiety (11 ppm; cf. [6] and refs. cit. therein), but small $\Delta\delta$ values for C(4) and C(6) (<2 ppm). Hence, the broad signals at ca. 96, 155, and 166 ppm are assigned to C(5), C(2), and PhC=O, respectively, and the rather sharp signals at 162 – 163 and 145 – 160 ppm to C(4) and C(6), respectively. This assignment is corroborated by the HMBC spectrum of the p-toluenesulfonate derived from **2** (data not given), especially by cross-peaks between the again rather sharp signal of C(4) at 162 ppm and both the H–C(5) and H–C(6) signals. We differ from the opinion of Sekine and coworkers [21] by assuming that tautomer **T3** (weaker C(5)–H····O=C H-bond than in **T1**) does not contribute significantly to the tautomeric equilibrium. The relatively weak downfield shift of PhC=O (166 ppm) suggests an equilibrium between **T1** and only one imino tautomer.

Structure and Association of the $C^*[s]C^{(*)}$ Dinucleosides. 1. Homopairing of Cytidines. There is only one pairing pattern for unprotonated cytidines, forming two H-bonds between N(3) and H₂N–C(4) (Fig. 1,a). The homoassociation of lipophilic cytidines in CHCl₃ was studied by IR [22], Raman [23], and ¹H-NMR spectroscopy [24], and by calorimetry [25]. An association constant $K_{ass} = 40 - 42 \text{ M}^{-1}$ at 25° was determined, assuming a 1:1 association, with $-\Delta H^\circ = 4.9 \text{ kcal/mol}^4$) [23][24], similar to the self-association of adenosines and uridines in CHCl₃ [26][27]. Ab initio calculations of the C_i -symmetric CC base pair [28] evidence a length of 2.05 Å for the NH····N H-bond and a stabilisation energy of 17.35 kcal/mol for one base pair in the gas phase.

A priori, $C^*[s]C^{(*)}$ dinucleosides may form parallel and antiparallel cyclic duplexes. Depending on the orientation of the base pairs, $C^*[s]C^{(*)}$ dinucleosides can form three antiparallel cyclic duplexes, CC1-CC3 (Fig. 1,b) and four parallel ones, CC3-CC7 (Fig. 1,c). CC1 is C_1 -symmetric, the other duplexes are C_2 -symmetric. These cyclic duplexes were evaluated with the help of Maruzen models. A gt-conformation of the linker was set in agreement with the consistently observed conformation of thiomethylene-linked A- and U-derived dinucleosides. This conformation leads to a large distance between the base pairs of all duplexes (ca. 6 Å) that would even allow an isomerization of the C(6/I)-unsubstituted isomers CC4 and CC6 to CC5 and CC7,

 ⁻ΔH° resulting from calorimetric measurements [25] depends strongly upon the concentration, and is significantly lower (1.7 kcal/mol).

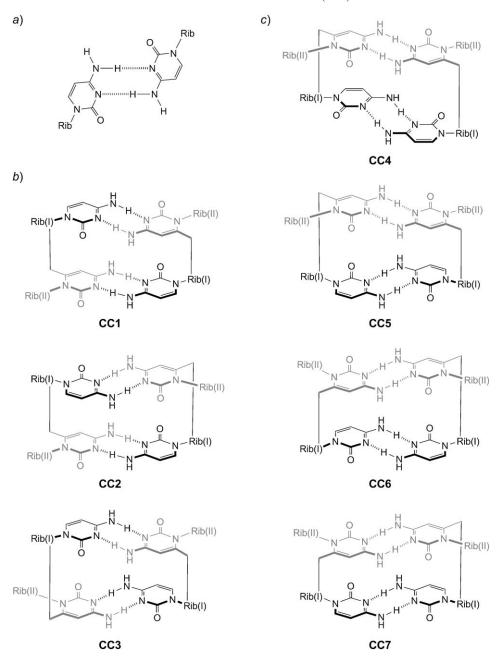


Fig. 1. a) Self-association of cytidine mononucleotides. b) and c) Schematic representation of the possible antiparallel (i.e., CC1-CC3) and parallel (i.e., CC4-CC7) cyclic duplexes obtained from $C^*[s]C^{(*)}$ dinucleosides. Conformational analysis based on Maruzen models.

respectively, by rotating the base pair between units I without breaking the H-bonds. The χ angles of unit I are listed in *Table 1*. Surprisingly, the cytosine unit of unit I appears to adopt not only a *syn* (CC4 and CC6) or a high-*syn* (CC1 and CC2) conformation, but also an *anti* (CC1 and CC3) and even a nonclassic *anti* (CC5 and CC7) conformation. Some duplexes appear to be disfavoured by steric interactions of the substituent at C(6/I) and of the bulky TDS group. The parallel duplex CC4 appeared to be the most favourable one; among the desilylated dinucleosides, the most favourable ones were the parallel duplexes CC4 and CC6, and the antiparallel duplex CC2.

Table 1. Maruzen Modeling of the C*[s]C Cyclic Duplexes CC1 - CC7 and Their 6-Substituted Analogues

	χ/Ι	Steric interaction of ROCH ₂ –C(6/I) ^a)	Steric interaction of TDSO–C(5'/II) ^b)
Antiparall	el duplexes		
CC1	$-60^{\circ} (anti),$	strongly disturbing	disturbing
	+ 120° (high syn)	not disturbing	not disturbing
CC2	$+ 120^{\circ}$ (high syn)	not disturbing strongly disturbing	disturbing
CC3	$- 60^{\circ}$ (anti)		not disturbing
Parallel du	plexes		
CC4	$+100^{\circ}$ (syn)	not disturbing	not disturbing
CC5	-50° (nonclassic anti)	disturbing	not disturbing
CC6	$+80^{\circ}$ (syn)	not disturbing	disturbing
CC7	-30° (nonclassic anti)	disturbing	not disturbing

^a) H-C(6/I) is at worst weakly disturbing. ^b) HO-C(5'/II) shows no disturbing interactions.

Syn- and anti-configured cyclic duplexes should be easily identified by strong ROESY cross-peaks between H–C(6/I) (or CH₂–C(6/I)), and either H–C(1'/I) or H–C(2'/I) [29]. Antiparallel cyclic duplexes should be easily identified by a ROESY cross-peak between the two H_aN–C(6/I) and H_aN–C(6/II) involved in base pairing and thus resonating at low field. No cross-peaks are expected for parallel cyclic duplexes (interaction with the identical partner).

2. Crystal Structure of $11 \cdot MeOH$. Crystals of $11 \cdot MeOH$ suitable for X-ray analysis⁵) were obtained by slow evaporation of a solution of 11 in MeOH. The crystals are orthorhombic (space group $P2_12_12_1$), and they reveal an antiparallel duplex comprising two dinucleoside units, **A** and **B**, which possess a slightly different geometry (Fig. 2 and Table 2). As expected for a cyclic duplex, the nucleobases adopt a synconformation ($\chi = 65.9 - 69.3^{\circ}$). The linker is characterised by a gt-conformation ($\eta_1 = 50.9^{\circ}$ and 56.11° , $\eta_2 = 170.9^{\circ}$ and 175.3°), a distorted gauche-conformation $\theta = 99.5^{\circ}$ and 175.3° , and two gauche angles θ and θ are arranged almost orthogonally to each other, and do not stack. This is due to the interaction with MeOH. Although the H-atom of the OH group could

⁵⁾ The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as deposition No. CCDC-782324. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ (fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).

not be located, it is evident that MeOH acts a H-bond acceptor from HN–C(4/II) of one base pair (C(4/II)NH^B···OMe distance of 2.07 Å) and as H-donor to O=C(2/I) of the other base pair (MeO···O^B=C(2/I) distance of 2.673 Å; *Fig. 2,b*). All furanose rings adopt a shallow (N)-conformation. The base pairs are characterized by N···H distances of 2.11–2.22 Å. The bridging by MeOH and the strong buckle (23 and 35°) and propeller twists (11 and 16°) suggest that the solid state structure of 11·MeOH is hardly a good model for the solution structure of the cyclic duplex of 11. The

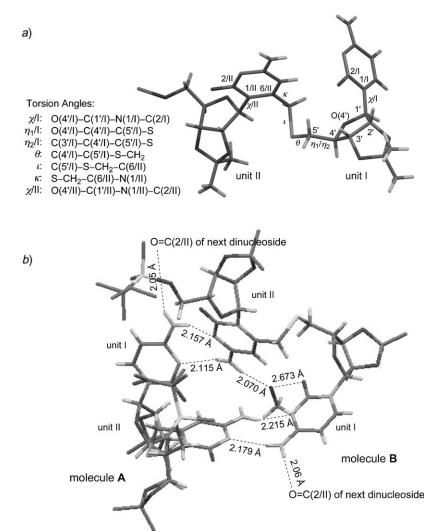


Fig. 2. a) Capped-sticks representation of the crystal structure of the dinucleoside $\mathbf{11} \cdot MeOH$ with definitions of the torsion angles (substituents at Si omitted for clarity). b) Cyclic duplex of $\mathbf{11} \cdot MeOH$ with intra- and intermolecular H-bonds (H-atoms of the silyl and the isopropylidene groups omitted for clarity; MeOH not located).

Table 2. Selected Distances, Bond Angles, and Torsion Angles of Crystalline 11 · MeOH

$H \cdots N$ Distance and $N-H \cdots N$ bond angle		Distance [Å]	Bond angle [°]
$\frac{1}{N(4/I)-H^{A}\cdots N^{B}(3/II)}$		2.115	152.9
$N^{A}(3/I)\cdots H^{B}-N(4/II)$		2.157	155.8
$N(4/I)-H^A\cdots H^B-N(4/II)$		2.555	
$N(4/I)-H^B\cdots N^A(3/II)$		2.215	159.8
$N^{B}(3/I)\cdots H^{A}-N(4/II)$		2.179	163.8
$N(4/I)-H^B\cdots H^A-N(4/II)$		2.394	
$N(4/I)-H^B\cdots OMe$		2.070	168.8
$C(2/I)=O^B\cdots OMe$		2.673	
Torsion angle	Short notation	Molecule A [°]	Molecule B [°]
O(4'/I)-C(1'/I)-N(1/I)-C(2/I)	χ/I	69.3	65.9
C(1'/I)-C(2'/I)-C(3'/I)-C(4'/I)		9.8	8.7
C(2'/I)-C(3'/I)-C(4'/I)-O(4'/I)		-9.0	-11.1
C(3'/I)-C(4'/I)-O(4'/I)-C(1'/I)		5.0	9.7
O(4'/I)-C(4'/I)-C(5'/I)-S	$oldsymbol{\eta}_1$	50.9	56.1
C(3'/I)-C(4'/I)-C(5'/I)-S	η_2	170.9	175.3
$C(4'/I)-C(5'/I)-S-CH_2$	Θ	-99.7	- 99.5
$C(5'/I)$ –S– CH_2 – $C(6/II)$	ι	-76.2	-74.6
$S-CH_2-C(6/II)-N(1/II)$	κ	-73.1	-75.1
O(4'/II)-C(1'/II)-N(1/II)-C(2/II)	χ/II	66.9	68.1
C(1'/II)-C(2'/II)-C(3'/II)-C(4'/II)		8.2	-2.4
C(2'/II)-C(3'/II)-C(4'/II)-O(4'/II)		-13.0	-2.7
C(3'/II)-C(4'/II)-O(4'/II)-C(1'/II)		13.3	7.2

conformation of the cyclic duplex of 11 · MeOH did not change upon minimisation of the solid-state structure by the MM3* force field programme [30]. However, removing MeOH led to a profound distortion of the structure, and the CC base pairs were replaced by single H-bonds to N(3) or O=C(2) as H-acceptors.

3. Association of the $C^*[s]C^{(*)}$ Dinucleosides. The $C^*[s]C^*$ dinucleosides **16** and **17** are not soluble in $CDCl_3$, and their association was analysed in $(D_6)DMSO$. The chemical shifts for the NH_2 groups of **16** and **17** in $(D_6)DMSO$ (7.24–7.67 ppm; *Table 6* in the *Exper. Part*) are similar to those of corresponding monocytidines (7.09–7.35 ppm [31]) and reveal mostly solvated monoplexes. The $C^*[s]C$ alcohol **12** is sufficiently soluble in $CDCl_3$ to record the 1H - and ^{13}C -NMR spectra, but not well enough to follow the concentration dependence of the NH chemical shifts.

The more extensively protected $C^*[s]C^{(*)}$ dinucleosides 11, 14, and 15 are fairly well soluble in CDCl₃. Their association in this solvent was studied by vapour pressure osmometry (VPO) of the apparent molecular weight, and by ¹H-NMR and CD spectroscopy. The unambiguous assignments of the H- and C-signals are based on DQF-COSY spectra of 11, 14, and 15, HSQC spectra of 11 and 14, and HMBC spectra of 11 and 14. ROESY Cross-peaks between the NH₂ groups and H–C(5) allowed an unambiguous assignment of the NH signals of 11 and 14 (see below for a detailed discussion). Unfortunately, the broad NH signals of 12 and 15 do not show any ROESY cross-peaks, and the assignment of their NH signals is based on a comparison with the spectra of 11 and 14. The association constants K_{ass} of 11, 14, and 15 were determined

on the basis of the concentration dependence of the chemical shifts of HN–C(4) involved in base pairing (shift concentration curve (SCC)).

The formation of a cyclic duplex of 11 in CHCl₃ was evidenced by determining the molecular weight by VPO at a concentration of 1 and 5 mm, revealing an apparent molecular weight of 1454.19 and 1489.75 g/mol, *i.e.*, 1.97 and 2.02 times the molecular weight of the monoplex, respectively.

The SCCs of 11, 14, and 15 were determined by stepwise dilution of 50 mm solutions in CDCl₃ to 0.2 mm and following the chemical shift for H₂N-C(4/I) and H_nN-C(4/II) that are involved in base pairing and, therefore, resonate at low field (>9 ppm for 10 mm solutions), leading to two curves for each dinucleoside (Fig. 3,a). The plateau reached by the SCCs of 11, 14, and 15 for concentrations > 10 mm and the steep ascent of the SCCs evidence a ready formation of cyclic duplexes. The chemical shifts of $H_aN-C(4/I)$ and $H_aN-C(4/II)$ of 12 (5 mm) are similar to those of 15, suggesting similar SCCs for 12 as for 15. Whereas the plateau for H₂N-C(4/II) of the four dinucleosides 11, 12, 14, and 15 is found within a narrow range at 9.3 – 9.4 ppm, the plateau for H_aN–C(4/I) of the alcohols **12** (9.8 ppm) and **15** (10.2 ppm) is at a distinctly lower field than the plateau for the silyl ethers 11 (10.8 ppm) and 14 (10.6 ppm; Table 6 in the Exper. Part). Thus, cleavage of the TDS group of 11 and 14 leads to an upfield shift for H_aN-C(4/I) of **12** and **15**, and this hints at the presence of antiparallel duplexes. The SCCs of $H_aN-C(4/I)$ of 11 and 15 do not form an ideal plateau, as a weak and constant decrease is observed for concentrations above 5 mm (see SCCs of 11 in Fig. 3,b). Increasing the concentration of 11 from 15 to 176 mm leads to an upfield shift for H_aN-C(4/I) of 0.4 ppm⁶). This phenomenon was rationalised by assuming that the duplexes associate further at high concentrations. Indeed, H_bN-C(4/I) of 11, but not $H_bN-C(4/II)$, shows a significant downfield shift upon increasing the concentration (5.47 ppm for a 14 mm and 5.96 ppm for a 176 mm solution). This suggests that the duplexes associate at higher concentration by an interduplex H-bond from H_bN-C(4/I) to an O=C(2), similarly as in the crystal of $11 \cdot \text{MeOH}$ (Fig. 2,b). It appears reasonable to assume that this H-bond of H_bN-C(4/I) weakens the H-bond of H_aN-C(4/I), and thus leads to an upfield shift of H_aN-C(4/I).

The equilibrium constants were calculated according to a method of *Gutowsky* and *Saika* [32], assuming an equilibrium between monoplex and duplex, and including a value of 5.60 ppm for a 0.0001 mm solution. This value was obtained by extrapolating the SCC of the hydroxymethylated cytidine monomer obtained by debenzoylation of 4^7). The association constants K_{ass} were calculated from the SCCs of $H_aN-C(4'/I)$ and $H_aN-C(4'/I)$ in *Fig. 3*. The concentration range considered for $H_aN-C(4/I)$ of **11** and **15** was restricted to below 15 mm, *i.e.*, to the increasing section of the SCC. The association constant K_{ass} increases from **14** (25000/31000 m⁻¹; *Table 3*) *via* **11** (39000/52000 m⁻¹) to **15** (96000/120000 m⁻¹), corresponding to $-\Delta G_{295}$ values of 5.9 – 6.9 kcal/mol. While identical K_{ass} values should be obtained from the SCCs of $H_aN-C(4'/I)$ and $H_aN-C(4'/II)$, K_{ass} value obtained from the SCCs of $H_aN-C(4'/I)$ is *ca.* 1.3 times larger

See [27] for a similar observation for duplexes of U*[s]U* dinucleosides.

⁷⁾ There are two NH signals at higher concentration that coalesce at lower concentration. Therefore, the value of 5.60 ppm derived from the SCC of the more deshielded NH may be somewhat too small, although the K_{ass} and $-\Delta G$ values agree well with the results of *Sartorius* and *Schneider* [24].

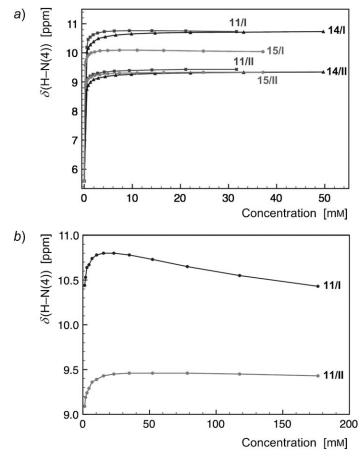


Fig. 3. a) Shift/concentration curves (SCCs) of the more deshielded HN–C(4/I and II) of the C*[s]C(*) dinucleosides 11, 14, and 15 for 0.19–49.7 mm solutions in CDCl₃ (including a value of 5.60 ppm for a 0.0001 mm solution). b) SCCs of the more deshielded HN–C(4/I and II) of 11 for 0.19–176 mm solutions in CDCl₃.

than K_{ass} obtained from the SCCs of $H_aN-C(4'/II)$, but the difference is within the error limits

Thermodynamic parameters for the association of **11**, **14**, and **15** were determined by *van't Hoff* analysis of the ¹H-NMR spectra obtained from 1-2 mM solutions in CDCl₃ in a temperature range from 10 to 50° and in 10° intervals (*Table 3*). The $-\Delta H$ values evidence a similar strength for the CC base pair as for the *WC*-type base pairs of U*[s]A^(*) dinucleosides [1].

The linker of the paired C*[s]C(*) dinucleosides **11**, **12**, **14**, and **15** adopts a *gt*-conformation, as evidenced by J(4',5'a/I) in the range of 10.9-11.1 Hz and J(4',5'b/I) in the range of 1.5-2.1 Hz, whereas the solvated monoplexes of **16** and **17** (J(4',5'a/I)) in the range of 6.3-6.7 Hz and (J(4',5'b/I)) in the range of 7.7-7.9 Hz; *Table 6* in the *Exper. Part*) prefer a *ca.* 1:1 *gt/tg*-equilibrium. The *gt*-conformation of **11**, **12**, **14**, and **15**

Table 3. ¹*H-NMR Chemical Shifts of* $H_aN-C(4)$ *of the Monoplex* (c=0 mM) *and the Cyclic Duplexes* $(c=\infty)$, and Association Constant K_{ass} as Calculated from the SCCs of the $C^*[s]C^{(*)}$ Dinucleosides 11, 14, and 15 in Fig. 3. Thermodynamic parameters by van't Hoff analysis for 1-2 mM solutions in CDCl₃ at $10-50^\circ$.

Dinucleoside	$K_{\rm ass}$ [M ⁻¹]	$\delta_{ ext{monoplex}}{}^{ ext{a}})$ [ppm]	$\delta_{ ext{duplex}}^{ ext{b}})$ [ppm]	$-\Delta G_{295}^{ m c})$ [kcal/mol]	$-\Delta H$ [kcal/mol]	$-\Delta S$ [cal/mol·K]
$H_aN-C(4/I)^d$						
11	52000 ± 24000	5.55 ± 0.13	10.96 ± 0.10	6.4	12.6	21.3
14	31000 ± 3000	5.57 ± 0.04	10.85 ± 0.08	6.1	14.7	26.8
15	120000 ± 20000	5.49 ± 0.05	10.22 ± 0.03	6.9	17.9 ^d)	38.6 ^d)
H _a N-C(4/II)						
11	39000 ± 16000	5.57 ± 0.10	9.54 ± 0.06	6.2	14.1	26.9
14	25000 ± 2000	5.58 ± 0.05	9.43 ± 0.02	5.9	14.0	25.5
15	96000 ± 7000	5.53 ± 0.03	9.40 ± 0.01	6.7	15.2 ^d)	29.9 ^d)

^a) Extrapolated for c=0. ^b) Extrapolated for $c=\infty$. ^c) Calculated from $K_{\rm ass}$. ^d) Only increasing δ values are used for the numerical analysis (11: up to 9 mm, 14: up to 50 mm, 15: up to 11 mm). ^d) Temperature range $20-50^{\circ}$.

is corroborated by ROESY cross-peaks between H–C(3'/I) and both H_a –C(5'/I) and H_b –C(5'/I). As expected, the cross-peaks with H_a –C(5'/I), possessing the larger coupling with H–C(4'/I), are more intensive. The proximity of H_a –C(5'/I) = H_{pro-R} –C(5'/I) to the nucleobase leads to an opposite relative shielding of H_{pro-R} –C(5'/I) and H_{pro-S} –C(5'/I) (cf. [33]), as it was already observed in the U*[s]A^(*) and A*[s]U^(*) series [1]. Both furanose units of **11**, **12**, **14**, and **15** prefer an (*N*)-conformation.

A slight upfield shift for H–C(2'/I) relative to H–C(2'/II) ($\Delta\delta$ 0.05–0.14 ppm) suggests an incomplete preference for the syn-conformation of unit I. syn/anti-Equilibria are analysed more precisely by ROESY spectra (cf. [29][1]). The exclusive synconformation of unit II of 11, 12, 14, and 15 is evidenced by a strong cross-peak between the more strongly shielded H_bC-C(6/II) and H-C(1'/II), and the absence of a crosspeak between this H-atom and H-C(2'/II). H_bC-C(6/II) shows also a TOCSY crosspeak (same phase as the signals on the diagonal) with H–C(5/II), whereas CH_a–C(6/II) shows both a cross-peak with H–C(5/II) and a TOCSY cross-peak with H–C(1'/II), confirming the same, rigid conformation of the CH₂SCH₂ linker of all four dinucleosides. H-C(6/I) of the paired $C^*[s]C$ dinucleosides 11 and 12 show strong cross-peaks with H–C(5/I) and H–C(1'/I), and a weaker one with H–C(2'/I). The intensity ratio of the cross-peaks with H–C(1'/I) and H–C(2'/I) is ca. 7:3. Since the distance C(6/I)H \cdots HC(2'/I) in the anti-conformers is distinctly shorter than the distance $C(6/I)H \cdots HC(1'/I)$ I) in the syn-conformers (as deduced from Maruzen modeling), the syn/antiequilibrium must be distinctly larger than 7:3. Nevertheless, the cross-peaks evidence that significant amounts of 11 and 12 adopt an anti-conformation in the cyclic duplex. Both H-atoms of C(6/I)– CH_2 of the $C^*[s]C^*$ dinucleosides 14 and 15 show strong crosspeaks with H-C(5/I) and H-C(1/I), and only 14 shows also a weaker cross-peak with H-C(2'/I). This evidences free rotation around the C(6/I)-CH₂ bond, the exclusive syn-conformation of unit I of 15, and a syn/anti-equilibrium of 14, implying that 14 adopts partially the *anti*-conformation in the cyclic duplex, and this in spite of the C(6)

I)-substitution. The analysis of $\delta(H-C(2'/I))$ does not fit well with these ROESY data, indicating that other factors must also affect the chemical shift of H-C(2'/I).

Antiparallel and parallel cyclic duplexes should be easily identified by the presence or absence of a cross-peak between the two NH groups engaged in base pairing. This is so, because the two NH groups engaged in base pairing of parallel duplexes involve homotopic units. All four NH of 11 show strong cross-peaks with H-C(5) of the corresponding unit, i.e., there are cross-peaks between the H-C(5/I) signal at 5.64 ppm and the NH signals at 10.80 and 5.42 ppm, and between the H-C(5/II) signal at 5.81 ppm and the NH signals at 9.41 and 7.14 ppm. Weak EXSY cross-peaks (same phase as the diagonal) were observed between the NH signals at 10.80 and 5.42 ppm and between the NH signals at 9.41 and 7.14 ppm. This evidences that the base pairs break apart within the mixing time of the ROESY measurement, allowing exchange of the position of the NH groups by rotation about the C(4)-NH₂ bond. The presence of weak ECSY cross-peaks and the absence of a (strong) ROESY cross-peak between the two NH at low field strongly suggest parallel duplexes of 11. The NH signals of 14 at 10.64, 9.30, and 7.22 ppm show strong ROESY cross-peaks with H-C(5), whereas the NH signal at 5.40 ppm is too close to the H–C(5/I) signal at 5.42 ppm to detect a crosspeak. Due to broader NH signals, no EXSY cross-peaks were observed. The absence of a (strong) cross-peak between the signals at 10.64 and 9.30 ppm is a strong indication for parallel duplexes of 14.

Unfortunately, the NH signals of **12** and **15** are too broad to show any ROESY cross-peaks, and do not allow assignment of the direction of the duplexes. There is a striking difference between the silyl ethers **11** and **14**, and the corresponding alcohols **12** and **15**; deprotection of TDSO–C(5'/II) moiety leads to a strong upfield shift of H_aN –C(4/I) ($\Delta\delta$ = 0.97 and 0.48 ppm, resp.; *Table* 6 in the *Exper. Part* and *Fig.* 3), whereas the chemical shift of H_aN –C(4/II) is hardly affected ($\Delta\delta \leq 0.07$ ppm). For parallel cyclic duplexes, HO–C(5'/II) must have a close interaction with the base pair between units I to explain the effect of deprotecting TDSO–C(5'/II) on the chemical shift characterising the plateau of the SCC of unit I (*Fig.* 3, a). This is not the case for **CC4**, where HO–C(5'/II) points away from this base pair (*see Fig.* 1), but could be realised for **CC6**, where HO–C(5'/II) may have a π -contact close to C(5/I). We do, however, not see why this interaction should be sufficient to favour **CC6**. It is more likely that HO–C(5'/II) of **CC6** forms an intramolecular H-bond to O=C(2/II) (in CDCl₃ solution). The antiparallel duplex **CC2** may well be favoured, as pairing of both bases is strengthened by cooperative H-bonding involving HO–C(5'/II).

The above ¹H-NMR analysis suggests an equilibrium between the parallel duplexes **CC4** and **CC5** of the silyl ethers **11** and **14**, with **CC4** predominating. The isomerisation of **CC4** to **CC5** of **11** could take place by rotation of the intact base pair between units I, while the analogous isomerisation of **14** requires breaking this base pair apart and reorienting the cytosine moieties. The alcohols **12** and **15**, however, appear to form (most probably) antiparallel duplexes. For **12**, there may be an equilibrium between **CC2** and **CC3**, with **CC2** predominating, while **15** forms only **CC2**. This difference agrees well with the expectation, since the MMTrOCH₂ substituent of **15** strongly disfavours an *anti*-orientation of the nucleobase.

The CD spectra of 1 mm solutions of the dinucleosides 11, 14, and 15 in CHCl₃ (Fig. 4) show a very weak dependence of the ellipticity on the temperature, evidencing

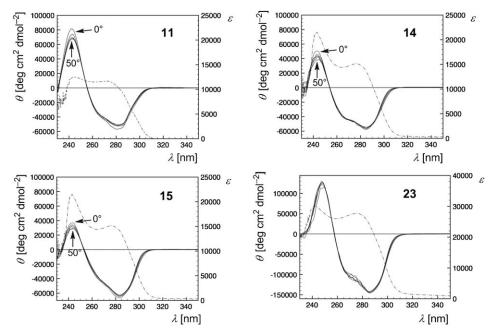


Fig. 4. Temperature-dependent CD spectra (solid lines, in 10° steps from 0 to 50°) and UV spectra (dashed lines) of the dinucleosides 11, 14, and 15, and the tetranucleoside 23 for 1 mm solutions in CHCl₃

the absence of stacking in the cyclic duplexes, in agreement with the large distance of ca. 6 Å between the base pairs found by *Maruzen* modeling (see above). All spectra show negative *Cotton* effects characterised by a maximum around 245 nm and a minimum around 280 nm.

Association of the 2',3'-O-Isopropylidene-Protected C*[s]C*[s]C* Tetranucleoside 23. The association of the isopropylidene-protected and thus lipophilic tetranucleoside 23 was studied in several solvents and solvent mixtures by 1 H-NMR spectroscopy, VPO of the apparent molecular weight, and temperature-dependent CD spectroscopy. The DQF-COSY 1 H-NMR spectrum of 23 in CDCl₃ shows signals for four H₂N-C(4') groups, each with a signal at low and high field (10.78/5.35, 10.08/7.29, 10.04/7.29, and 9.43/7.01 ppm), evidencing that all NH₂ groups are involved in base pairing. 1 H-NMR Dilution experiments with solutions of 23 in CDCl₃, (D₆)acetone, CD₃CN, (D₈)THF, (D₅)pyridine, and CDCl₃/(D₆)DMSO 4:1 showed no concentration dependence of the NH signals, suggesting that the association in these solvents is too strong. 1 H-NMR Spectra in CDCl₃/(D₆)DMSO < 4:1 showed broad NH signals.

The mixture $CD_3CN/(D_6)DMSO~4:1$ proved suitable for a dilution experiment of 23. The solubility limited the concentration to a maximum of 10 mm so that the chemical shift of the broad signal for $H_aN-C(4/I-IV)$ was followed in the concentration range between 10 and 0.39 mm (Fig.~5). The dilution experiment resulted in a SCC, which shows a strong bending at concentrations between 1 and 5 mm, evidencing the formation of cyclic duplexes. Unfortunately, the limited concentration range did not allow checking the formation of a plateau. Calculation led to chemical shifts of $6.98 \pm$

0.10 and 9.97 ± 0.09 ppm for $H_aN-C(4/I-IV)$ of the monoplex and duplex, respectively, and to a K_{ass} value of 6100 ± 1600 , corresponding to a $-\Delta G_{295}$ value of 5.1 kcal/mol. For comparison, the concentration dependence of $\delta(NH)$ of 11 was studied in the same solvent mixture. A 0.8 mm solution showed 3 NH signals at 6.55, 6.78, and 6.98 ppm (2 NH) that were shifted downfield to 7.08, 7.12, 7.30, and 7.46 ppm upon increasing the concentration to 31 mm. Overlapping of the signals was observed at intermediate concentrations. The SCC of the most strongly deshielded NH of 11 is depicted in Fig. 5. The weak downfield shift (<0.5 ppm) of all NH signals of 11 evidences some unspecific and weakly persistent intermolecular interactions at higher concentrations.

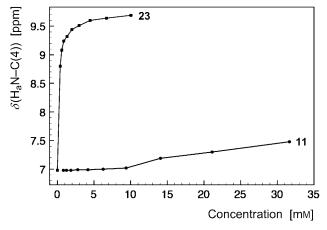


Fig. 5. Shift/concentration curves (SCCs) for $H_aN-C(4|I-IV)$ of the tetranucleoside **23** (including a value of 6.98 ppm for a 0.0001 mm solution) and for the most deshielded $H_aN-C(4)$ of the dinucleoside **11** in $CD_3CN/(D_6)DMSO$ 4:1

The conformation of the cyclic duplex of the tetranucleoside 23 in CDCl₃ was investigated by NOESY 1H-NMR spectroscopy. The amino groups of the terminal units I and IV of 23 show the same NOESY pattern as units I and II of the dinucleosides 11 and 14; i.e., strong cross-peaks between H-C(5) and both NH, and an EXSY crosspeak between the two NH signals (only visible for unit I). The amino groups of the central units II and III of 23 show a different pattern, viz., cross-peaks between the two NH, and between the more strongly shielded NH and H-C(5), and a TOCSY crosspeak between the more deshielded NH and H-C(5). This evidences that only the terminal base pairs were broken within the mixing time of the NOESY measurement to allow rotation about the C(4)-NH₂ bond. The absence of any cross-peak between the signals at 10.78 and 9.43 ppm, and between the signals at 10.08 and 10.04 ppm is a strong evidence for parallel duplexes. The three linkers adopt the same conformation, as revealed by large J(4',5'a/I-III) of ca. 11 Hz and small $J(4',5'b/I-III) \le 1.5$ Hz, evidencing the gt-conformation, and strong ROESY cross-peaks between H-C(1'/II-IV) and the more strongly shielded CH-C(6/II-IV), and between H-C(5/II-IV) and the less shielded CH-C(6/II-IV). Units II-IV prefer completely the syn-conformation, as indicated by strong cross-peaks between H-C(1'/II-IV) and the more shielded

CH–C(6/II-IV), and by a weak cross-peak between H–C(2'/II-IV) and the more shielded CH–C(6/II-IV). Unit I, however, adopts a *syn/anti*-equilibrium. This is evidenced by strong cross-peaks of both CH–C(6/I) with both H–C(1'/I) and H–C(2'/I). The cross-peaks with H–C(1'/I) are twice as large as those with H–C(2'/I). Thus, **23** shows the same conformational equilibrium as the parent dinucleoside **14** (*i.e.*, **CC4** and some **CC5**).

As expected, the CD spectrum of 23 in CHCl₃ (*Fig. 4*) is similar to the CD spectra of the dinucleosides 11, 14, and 15. It shows no base stacking, confirming the large distance between the base pairs in the cyclic duplex.

Association of the Unprotected $C^*[s]C^{(*)}$ Dinucleosides 13 and 18, and of the $C^*[s]C^*[s]C^*[s]C^*[s]C^*$ Tetranucleoside 24. CD Spectroscopy is used to evidence base stacking of dinucleosides in aqueous solutions [34–36]. We recorded CD spectra for 1 mm solutions of 13, 18, and 24 in H_2O in steps of 10° between 0 and 90° (Fig. 6). The spectrum of the C(6/I)-unsubstituted 13 shows no dependence of the ellipticity on the temperature, evidencing the absence of stacking in H_2O , as it is expected for solvated monoplexes and linear duplexes, and also for the cyclic duplexes with a large distance between the base pairs. The CD spectra of the C(6/I)-hydroxymethylated 18 and 24, however, show a temperature-dependent negative Cotton effect with a exciton interaction at 270 nm, leading to two CD bands and evidencing base-stacking. This observation is rationalized by stacking of the hydroxymethylated cytosine moieties

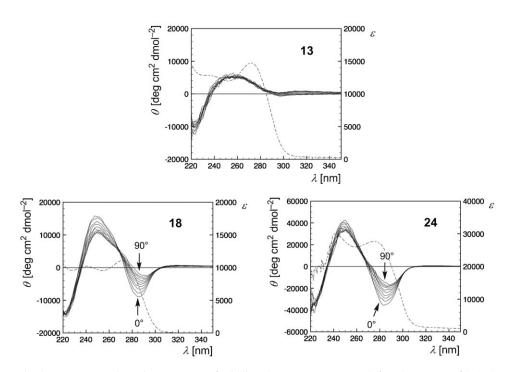


Fig. 6. Temperature-dependent CD spectra (solid lines, in 10° steps from 0 to 50°) and UV spectra (dashed lines) of the dinucleosides 13 and 18, and the tetranucleoside 24 for 1 mm solutions in H_2O

promoted by intermolecular H-bonds of $HOCH_2$ –C(6/I) to an unidentified acceptor of unit I.

¹H-NMR Spectra of **13**, **18**, and **24** in D₂O (*Table 8* in the *Exper. Part*) were recorded at a concentration of 10 mm for **13** and **18**, and of 2.6 mm for **24**. Whereas **13** shows a single set of signals, **18** and **24** are revealed as 9:1 mixtures of isomers. Double sets of signals of unit I and of the linking unit only of **18** are in agreement with a 9:1 mixture of the solvated monoplex and the solvated base-stacked duplex, evidenced by CD spectroscopy, as discussed above. These two species do not equilibrate on the NMR time scale. For **24**, only the H–C(1'/I) signal of the minor component is visible, whereas the other signals are hidden by signals of the other units. The same downfield shift for H–C(1'/I) of the minor components of **18** and **24** ($\Delta \delta = 0.06$ ppm relative to the major component) suggests a solvated base-stacked duplex as the minor component also for **24**. To detect the chemical shifts of the NH₂ groups, ¹H-NMR spectra of **13** and **18** were recorded in H₂O/D₂O 9:1 at 23°. They show weak NH signals at 6.65 – 7.6 ppm, with only 10% of the expected intensity. Similar chemical shifts as the NH₂ group of cytidine monophosphate (200 mm solution: NH₂ signals at 7.35 and 6.85 ppm) [37] evidence – as expected – the absence of base pairing.

In the D_2O spectrum of **24**, the signals for the corresponding H-atoms of the four units overlap except for H–C(5) and H–C(1'), preventing a conformational analysis as described here for the dinucleosides **13** and **18**. The C(6)-substituted units (unit II of **13** and both units of **18**) adopt a *syn*-conformation, evidenced by $\delta(H-C(2'))$ of 4.76–4.84 ppm. The upfield shift for H–C(2'/I) (0.45 ppm) relative to H–C(2'/II) of the C(6/I)-unsubstituted **13** evidences an *anti*-configured unit I. All ribofuranosyl moieties of **13** and **18** adopt a (N)-conformation (J(1',2')/J(3',4')) in the range of 0.55–0.6). Larger J(4',5'b) than J(4',5'a) values suggest that the more strongly shielded H_b –C(5') corresponds to the H_{pro-R} –C(5'), in agreement with [33]. gg/gt/tg Ratios of 45:50:5 and 30:65:5 were calculated for unit I of **13** and **18** from the coupling constants in *Table 8* (*Exper. Part*). These rotameric equilibria agree well with solvated monoplexes of **13**, and with a mixture of solvated monoplexes and a base(I)-stacked duplex of **18**.

Biological Testing. The employment of Xenopus laevis embryos and tadpoles as efficient and cost-effective vertebrate animal models for *in vivo* drug-discovery screens, and the estimation of drug toxicities was recently reviewed [38]. For example, Xenopus embryos were successfully used to identify novel anti-angiogenic compounds which had comparable bioactivities in a mouse model of neovascularization [39].

The unprotected, H₂O-soluble dinucleosides **13** and **18** were evaluated for toxicity and teratogenicity using the *Xenopus* embryos (*Fig.* 7). Compound testing covered embryonic development from the onset of blood circulation until embryos became tadpoles and reached feeding stages. The studies were conducted according to the protocols approved by the Veterinary Office of the Canton of Zurich, Switzerland (Permit No. 1997/2004 to *A. W. B.*). *Xenopus* embryos were obtained by *in vitro* fertilization, staged, and documented as described in [39]. The embryos (25 embryos per *Petri* dish in a final volume of 5 ml) were treated from stage 32 (1 d, 16 h post fertilization) to stage 48 (7 d, 12 h) with 0.1x MMR (0.1 m NaCl, 2 mm KCl, 1 mm MgSO₄, 2 mm CaCl₂, 5 mm *HEPES*, pH 7.8) alone or 0.1x MMR supplemented with 5, 10, and 20 μm of **13**, or 5, 10, and 20 μm of **18**. The embryos were monitored daily for any evidence of abnormal embryonic development or altered morphology. No adverse

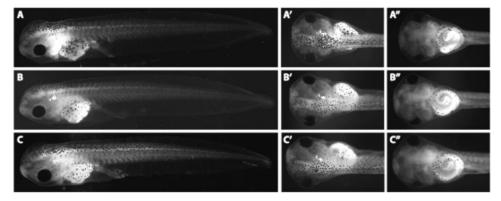


Fig. 7. Exposure of Xenopus laevis embryos to **13** and **18** shows no developmental defects at the highest concentration. X. laevis stage 45 tadpoles are shown in lateral (A, B, and C), dorsal (A', B', and C'), and ventral views (A'', B'', and C''). Embryos were immersed from stage 32 to stage 48 in salt water only (A), or in salt water containing either 20 μM of **13** (B) or 20 μM of **18** (C).

side effects of the treatments with 13 or 18 could be observed at all concentrations tested, and survival of the embryos was 100%.

We thank Prof. Dr. Bernhard Jaun for helpful discussions, and Syngenta AG, Basel, for generous financial support.

Experimental Part

General and Procedure for ¹H-NMR Studies. See [1].

 N^4 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine (3). A soln. of 2 [11] (22.4 g, 57.8 mmol) and 1*H*-imidazole (12.6 g, 185 mmol) in DMF (350 ml) was treated dropwise with 'thexyl(dimethyl)chlorosilane' (= TDSCl = dimethyl(1,1,2-trimethyl)silyl chloride; 16.5 g, 92.5 mmol) and stirred for 12 h. The mixture was diluted with MeOH (50 ml) and evaporated. A soln. of the residue in AcOEt (500 ml) was washed with $H_2O(2\times)$ and brine, dried (MgSO₄), and evaporated. Crystallization from EtOH gave 3 (27.8 g, 91%). Colourless crystals. R_f (CH₂Cl₂/AcOEt 4:1) 0.23. M.p. $153.0 - 154.5^{\circ}$. [α]_D²⁵ = +10.7 (c = 0.75, CHCl₃). UV (CHCl₃): 260 (22860), 310 (9480). IR (ATR): 3231w, 3075w, 2957w, 2865w, 1693m, 1665s, 1611m, 1555m, 1484s, 1433w, 1384m, 1376m, 1339m, 1301m, 1263s, 1250s, 1212m, 1186w, 1141m, 1102s, 1069s, 1042w, 1023m, 995m, 966w, 941w, 907w, 891w, 867m, 843s, 825s, 810s, 791m, 779s, 752m, 718m, 695s, 671m. ¹H-NMR (300 MHz, CDCl₃): see Table 4; additionally, 8.84 (br. s, BzNH); 7.91-7.87 (m, 2 arom. H); 7.61-7.46 (m, 3 arom. H, H-C(5)); 1.58 (sept., J=6.9, Me_2CH); 1.58, 1.34 (2s, Me_2CO_2); 0.85 (d, J = 6.9, Me_2CH); 0.82 (s, Me_2CSi); 0.11 (s, Me_2Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table 5*; additionally, 166.48 (br. s, NHC=O); 133.19 (d and s); 129.04, 127.58 (4d); 113.87 (s, Me₂CO₂); 34.10 (d, Me₂CH); 27.40, 25.50 (2q, Me₂CO₂); 25.50 (s, Me₂CSi); 20.48, 20.45 (2q, Me_2CSi); 18.67, 18.63 (2q, Me_2CH); -3.04, -3.27 (2q, Me_2Si). MALDI-MS: 530.3 (100, $[M+H]^+$). Anal. calc. for C₂₇H₃₉N₃O₆Si (529.71): C 61.22, H 7.42, N 7.93; found: C 61.10, H 7.32, N 7.91.

N⁴-Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-6-(hydroxymethyl)-2',3'-O-isopropylidenecytidine (4). A soln. of ${}^{1}\text{Pr}_{2}\text{NH}$ (17.4 g, 172 mmol) in THF (130 ml) was cooled to 0°, treated dropwise with 1.6M BuLi in hexane (108 ml, 172 mmol), and cooled after 90 min to -70° . The cooled soln. of LDA was transferred during 25 min *via* a *Teflon* canula to a -70° cold soln. of 3 (18.2 g, 34.4 mmol) in THF (350 ml). The soln. was stirred for 1 h at -70° , treated dropwise with DMF (27 ml, 344 mmol), stirred for 1 h at -60° , warmed to -20° , and treated with AcOH (11 ml). The mixture was poured into sat. NH₄Cl soln. and extracted with AcOEt (3×). The combined org. layers were washed with H₂O (2×) and brine, dried (MgSO₄), and evaporated. A soln. of the residue in EtOH (200 ml) was treated dropwise

Table 4. Selected ${}^{1}H$ -NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Cytidine Mononucleotides 3-10 in $CDCl_3^{\ a}$)

	3	4	5	6	7	8	9	10
H-C(5)	b)	7.61°)	b)	7.47°)	b)	b)	7.67°)	b)
H-C(6)	8.15	_	_	_	_	_	_	7.73
$CH_a-C(6)$	_	4.72	4.21	4.26	4.57	4.22	5.27	_
$CH_b-C(6)$	_	4.72	4.21	4.16	4.49	4.19	5.20	_
H-C(1')	5.98	5.92	5.84	5.76	5.98	5.86	5.71	5.65
H-C(2')	4.76	5.30	5.30	5.36	5.33	5. 31	5.34	5.13
H-C(3')	4.74	4.91	4.90	5.17	4.93	4.94	4.97	4.80
H-C(4')	4.39	4.19	4.13	4.21	4.23	4.12	4.22	4.30
$H_a - C(5')$	3.94	3.87	3.87	3.92 - 3.83	3.87	3.34	3.34	3.33
$H_b - C(5')$	3.78	3.80	3.81	3.92 - 3.83	3.81	3.27	3.29	3.33
J(5,6)	7.5	_	_	_	_	_	_	7.4
$J(H_a,H_b)$	_	d)	d)	12.9	12.9	12.8	13.5	_
J(1',2')	1.8	1.2	1.0	2.5	1.1	0.9	1.0	1.6
J(2',3')	6.2	6.5	6.5	6.7	6.4	6.5	6.5	6.5
J(3',4')	2.7	4.1	4.1	4.0	4.0	3.8	3.6	3.9
J(4',5'a)	2.5	5.4	5.5	c)	5.5	6.9	7.0	6.7
J(4',5'b)	3.6	7.1	7.2	c)	7.3	7.1	7.4	6.7
J(5'a,5'b)	11.6	10.7	10.5	c)	10.7	13.6	13.6	c)

a) Assignments based on a HSQC spectrum (9 and 10).
 b) Hidden by aromatic signals at 7.65 – 7.45 ppm.
 c) Broad signal.
 d) Not assigned.

Table 5. Selected ¹³C-NMR Chemical Shifts [ppm] of the Cytidine Mononucleotides 3-10 in CDCl₃

	3	4	5	6	7	8	9	10
$\overline{C(2)^b}$	154.66	155.55	157.69	155.77	154.8	155.4	152.16	154.54
C(4)	162.48	162.66	162.16	162.55	162.20	162.52 ^b)	162.50	163.14
$C(5)^b$	96.29	96.64	97.15	97.82	98.84	97.52	98.68	96.98
C(6)	145.01	160.26	158.96	157.61	155.21	157.58 ^b)	154.67	147.16
CH_2 – $C(6)$	_	61.33	62.80	62.83	41.17	62.94	64.42	_
C(1')	94.15	92.50	93.11	93.33	90.66	93.40	93.26	97.17
C(2')	86.33	84.31	84.23	83.38	84.19	85.00	84.74	85.06
C(3')	80.31	82.66	83.02	80.70	82.78	85.08	84.87	83.70
C(4')	88.02	90.20	90.29	88.42	90.66	88.83	89.17	87.53
C(5')	63.26	64.03	62.80	62.99	64.12	31.72	31.61	31.36

^a) Assignments based on HSQC spectra (9 and 10). ^b) Broad signal.

with a soln. of NaBH₄ (1.43 g, 37.8 mmol) in EtOH (200 ml), stirred for 30 min, and diluted with sat. NH₄Cl soln. After evaporation of the org. solvents, the mixture was extracted with AcOEt (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (Et₂O/pentane 4:1) gave **4** (16.6 g, 86%). Colourless solid. R_f (Et₂O/cyclohexane 4:1) 0.20. [α]₀²⁵ = +7.2 (c = 0.75, CHCl₃). UV (CHCl₃): 262 (22120), 312 (8600). IR (ATR): 3285w (br.), 2957w, 2867w, 1675m, 1649m, 1609s, 1567s, 1477m, 1414m, 1351s, 1249s, 1210m, 1158m, 1129m, 1082s, 1061s, 1000w, 971w, 901w, 873m, 828s, 777s, 702m, 640w. ¹H-NMR (400 MHz, CDCl₃): see *Table* 4; additionally, 8.92 (br. s, BzNH); 7.85 – 7.83 (m, 2 arom. H); 7.56 – 7.42 (m, 3 arom. H); 1.59 (sept., J = 6.9, Me₂CH); 1.52, 1.32 (s, Me₂CO₂); 0.85 (d, J = 6.9, Me₂CH); 0.82 (s, Me₂CSi); 0.08, 0.06 (s, Me₂Si); OH signal not visible.

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃); assignments based on a HMBC and a HSQC spectrum): see *Table 5*; additionally, 167.10 (br. *s*, NHC=O); 133.39 (*d*); 133.11 (*s*); 129.14 (2*d*); 127.83 (2*d*); 113.76 (*s*, Me₂CO₂); 34.26 (*d*, Me₂CH); 27.33, 25.45 (2*q*, *Me*₂CO₂); 25.45 (*s*, Me₂CSi); 20.52, 20.47 (2*q*, *Me*₂CSi); 18.65, 18.61 (2*q*, *Me*₂CH); -3.14, -3.16 (2*q*, Me₂Si). HR-MALDI-MS: 598.2351 (27, [*M* + K]+, C₂₈H₄₁KN₃O₇Si+; calc. 598.2345), 582.2794 (37, [*M* + Na]+, C₂₈H₄₁N₃NaO₇Si+; calc. 582.2602), 560.2794 (100, [*M* + H]+, C₂₈H₄₂N₃O₇Si+; calc. 560.2787). Anal. calc. for C₂₈H₄₁N₃O₇Si (559.73): C 60.08, H 7.38, N 7.51; found: C 60.11, H 7.52, N 7.28.

 $N^d\text{-}Benzoyl\text{-}5'\text{-}O\text{-}[dimethyl(1,1,2\text{-}trimethylpropyl)silyl]\text{-}2',3'\text{-}O\text{-}isopropylidene\text{-}6\text{-}\{[(4\text{-}methoxyphe\text{-}1)\text{-}10\text$ nyl)(diphenyl)methoxy]methyl]cytidine (5). A stirred soln. of 4 (857 mg, 1.53 mmol), DMAP (10 mg, 0.08 mmol) und EtN Pr₂ in CH₂Cl₂ (50 ml) was cooled to 0° and treated in portions with MMTrCl (1.89 g, 6.12 mmol). After 4 h, the mixture was diluted with H₂O (20 ml), and the phases were separated. The aq. phase was extracted with CH₂Cl₂ (2 ×). The combined org. layers were washed with H₂O and brine, dried $(MgSO_4)$, and evaporated. FC $(Et_2O/CH_2Cl_2\ 1:9)$ gave 5 $(1.11\ g,\ 87\%)$. Colourless foam. R_f $(Et_2O/CH_2Cl_2\ 1:9)$ CH_2Cl_2 1:9) 0.28. $[a]_D^{25} = -11.8 \ (c = 1.0, \text{CHCl}_3)$. IR (ATR): $3400 - 3100w \ (\text{br.})$, 2956w, 2865w, 1681m, 1612s, 1567s, 1507m, 1474m, 1448m, 1424m, 1371m, 1351s, 1314m, 1301m, 1249s, 1210m, 1180m, 1155m, 1063s, 1034s, 1001m, 976w, 931w, 900w, 874w, 828s, 777m, 766m, 745m, 698s, 671w, 631w. ¹H-NMR (300 MHz, CDCl₃): see *Table 4*; additionally, 8.53 (br. s, BzNH); 7.85 - 7.83 (br. d, J = 6.7, 2 arom. H); 7.64 - 7.50 (m, 7 arom. H, H-C(5)); 7.40 - 7.22 (m, 8 arom. H); 6.87 - 6.84 (m, 2 arom. H); 3.78 (s, MeO);1.59 (sept., J = 6.8, Me₂CH); 1.46, 1.31 (2s, Me₂CO₂); 0.85 (d, J = 7.0, Me₂CH); 0.82 (s, Me₂CSi); 0.07, 0.04 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃): see *Table* 5; additionally, 158.96 (s, MeOC); 143.35 (s, 2 C); 134.33 (s); 133.18 (s and d); 130.58 – 127.37 (several d); 113.47 (d, 2 C); 113.22 (s, Me₂CO₂); 88.48 (s, Ph₂C); 55.37 (q, MeO); 34.28 (d, Me₂CH); 27.41, 25.67 (2q, Me₂CO₂); 25.48 (s, Me₂CSi); 20.62, 20.57 (2q, Me_2CSi); 18.73, 18.69 (2q, Me_2CH); -2.96, -3.03 (2q, Me_2Si); NHC=O signal hidden by the noise. HR-MALDI-MS: 854.3845 (31, $[M + Na]^+$, $C_{48}H_{57}N_3NaO_8Si^+$; calc. 854.3807), 832.4003 (42, $[M + H]^+$, $C_{48}H_{58}N_3O_8Si^+$; calc. 832.3988), 273.1287 (100, MMTr⁺, $C_{20}H_{17}O^+$; calc. 273.1274). Anal. calc. for C₄₈H₅₇N₃O₈Si (832.08): C 69.29, H 6.90, N 5.05; found: C 69.02, H 6.95, N 5.08.

 2 C); 113.57 (s, Me₂CO₂); 34.29 (d, Me₂CH); 27.41, 25.55 (2q, Me_2 CO₂); 25.47 (s, Me₂CSi); 20.60, 20.54 (2q, Me_2 CSi); 18.74, 18.69 (2q, Me_2 CH); -3.01 (q, Me₂Si). HR-MALDI-MS: 600.2267 (29, [M + Na]⁺, C₂₈H₄₀ClN₃NaO₆Si⁺; calc. 600.2267), 578.2459 (68, [M + H]⁺, C₂₈H₄₁ClN₃O₆Si⁺; calc. 578.2448), 542.2667 (100, [M - Cl]⁺, C₂₈H₄₀N₃O₆Si⁺; calc. 542.2681). Anal. calc. for C₂₈H₄₀ClN₃O₆Si (578.18): C 58.17, H 6.97, N 7.27; found: C 57.98, H 6.96, N 7.07.

 $5'-S-Acetyl-N^4-benzoyl-2', 3'-O-isopropylidene-6-\{[(4-methoxyphenyl)(diphenyl)methoxy]methyl\}-1-(4-methoxyphenyl)(diphenyl)methoxy[methyl]-1-(4-methoxyph$ 5'-thiocytidine (8). A soln. of PPh₃ (4.21 g, 16.1 mmol) in THF (30 ml) was cooled to 0°, treated dropwise with DIAD (3.25 g, 16.1 mmol), and stirred for 10 min. The mixture was treated with a soln. of 6 (7.38 g, 10.7 mmol) in THF (10 ml), stirred for 10 min, treated dropwise with AcSH (1.14 g, 15 mmol), and stirred for another 90 min at 0° . The mixture was diluted with H₂O and extracted with AcOEt (3×). The combined org. layers were washed with H2O and brine, dried (MgSO4), and evaporated. FC (pentane/ AcOEt 2:1 \rightarrow 0:1) gave **8** (7.91 g, 99%). Yellow foam. $R_{\rm f}$ (AcOEt/pentane 1:1) 0.35. $[\alpha]_{\rm D}^{25} = +3.9$ (c =1.0, CHCl₃). UV (CHCl₃): 245 (12600), 273 (11800). IR (ATR): 3400 – 3200w (br.), 3054w, 2986w, 2931w, 1683s, 1610s, 2986w, 1508m, 1478m, 1447m, 1418m, 1371m, 1351m, 1301m, 1248s, 1210m, 1180m, 1155m, 1134w, 1091s, 1061s, 1031s, 1001m, 980m, 899w, 871m, 831m, 795w, 765w, 746w, 698s, 628m. ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$: see *Table 4*; additionally, 8.85 – 8.55 (br. s, BzNH); 7.90 (br. d, J = 7.2, 2 arom. H); 7.64 - 7.58 (m, 1 arom. H); 7.55 - 7.45 (m, 4 arom. H, H-C(5)); 7.42 - 7.23 (m, 10 arom. H); 6.88 - 6.83 (m, 2 arom. H)arom. H); 3.78 (s, MeO); 2.32 (s, AcS); 1.44, 1.30 (2s, Me₂C). ¹³C-NMR (100 MHz, CDCl₃): see *Table 5*; additionally, 195.13 (s, SC=O); 159.22 (s); 144.65, 143.48 (2s); 134.45 (s); 133.36 (d and s); 130.72 – 127.52 (several d); 113.59 (d, 2 C); 113.59 (s, Me₂C); 88.64 (s, Ph₂C); 55.38 (q, MeO); 30.72 (q, MeC=O); 27.23, 25.47 (2q, Me_2C); signal of NHC=O hidden by the noise. HR-MALDI-MS: 786.2234 (10, $[M + K]^+$, $C_{42}H_{41}KN_3O_8S^+; calc. \ 786.2246), \ 770.2499 \ (10, \ [M+Na]^+, \ C_{42}H_{41}N_3NaO_8S^+; calc. \ 770.2507), \ 748.2683$ $(10, [M+H]^+, C_{42}H_{42}N_3O_8S^+; calc. 748.2687), 273.1281 (100, MMTr^+; calc. 273.1274).$ Anal. calc. for C₄₂H₄₁N₃O₈S·H₂O (765.87): C 65.87, H 5.66, N 5.49; found: C 66.00, H 5.66, N 5.49.

5'-S-Acetyl-N⁴-benzoyl-2',3'-O-isopropylidene-6-{[(methylsulfonyl)oxy]methyl}-5'-thiocytidine (9). A soln. of 8 (3.78 g, 5.05 mmol) in CH₂Cl₂ (135 ml) was treated dropwise with Cl₂CHCO₂H (15 ml) and Pr₃SiH (2.41 g, 15.2 mmol), stirred for 45 min, and poured into sat. NaHCO₃ soln. The mixture was extracted with CH₂Cl₂ (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. A soln. of the residue in CH₂Cl₂ (100 ml) was cooled to 0° and treated with EtNⁱPr₂ (1.06 ml, 6.06 mmol) and dropwise with Ms₂O (968 mg, 5.56 mmol) in CH₂Cl₂ (10 ml). The mixture was stirred for 2 h at 0° and poured into H₂O. After separation of the layers, the aq. phase was extracted with CH₂Cl₂ (2×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (AcOEt/pentane 2:1) gave 9 (1.93 g, 69%). Colourless foam. R_f (AcOEt/pentane 3:2) $0.23. [\alpha]_{15}^{25} = +11.5 (c = 0.5, CHCl_3). IR (ATR): 3327w, 3129w, 2988w, 2935w, 1678s, 1617s, 1567s, 1498w,$ 1479m, 1422w, 1347s, 1242s, 1210m, 1175s, 1158m, 1091s, 1056s, 1002m, 967m, 948m, 899w, 870m, 833m, 800m, 785m, 761w, 701m, 664w, 625m. ¹H-NMR (300 MHz, CDCl₃): see Table 4; additionally, 8.73 (br. s, BzNH); 7.88 (br. d, J = 7.3, 2 arom. H); 7.66 – 7.49 (m, 3 arom. H); 3.20 (s, MsO); 2.34 (s, AcS); 1.53, 1.34 (2s, Me₂C). ¹³C-NMR (75 MHz, CDCl₃; assignments based on a HSQC spectrum): see Table 5; additionally, 194.74 (s, SC=O); 166.54 (br. s, NHC=O); 133.46 (d); 132.65 (s); 129.06 (2d); 127.72 (2d); 113.84 (s, Me₂C); 38.78 (q, MsO); 30.78 (q, MeC=O); 27.21, 25.45 (2q, Me₂C). HR-MALDI-MS: 576.1090 (100, $[M + Na]^+$, $C_{23}H_{27}N_3NaO_9S_2^+$; calc. 576.1081). Anal. calc. for $C_{23}H_{27}N_3O_9S_2$ (553.61): C 49.90, H 4.92, N 7.59; found: C 49.82, H 5.03, N 7.34.

5'-S-Acetyl-N⁴-benzoyl-2',3'-O-isopropylidene-5'-thiocytidine (10). A suspension of NaH (60% in oil; 340 mg, 8.52 mmol) in THF (15 ml) was cooled to 0°, treated dropwise with a soln. of 2 (1.65 g, 4.26 mmol) in THF (50 ml), and stirred for 20 min. The soln. was treated with 1-tosyl-1*H*-imidazole (1.04 g, 4.69 mmol) warmed to r.t., stirred for 4 h, and diluted with sat. NH₄Cl soln. After evaporation of the org. solvents, the aq. mixture was extracted with CH₂Cl₂(3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. A stirred soln. of the residue and AcSK (9.73 g, 85.2 mmol) in DMF (25 ml) was heated under N₂ to 70° for 6 h. DMF was evaporated, and a suspension of the residue in CH₂Cl₂ was washed with H₂O (2×). The org. layer was dried (MgSO₄) and evaporated. Crystallisation from toluene gave 10 (1.29 g, 69%). Grey solid. $R_{\rm f}$ (Et₂O) 0.23. M.p. 170.0–171.1°. [a] $_{\rm D}^{25}$ = +40.6 (c = 1.0, CHCl₃). UV (CHCl₃): 268 (21800), 308 (6640). IR (ATR): 3400–3200w (br.), 3144w, 3066w, 2988w, 2933w, 1666s, 1624s, 1551m, 1477s, 1400w, 1373m, 1351w, 1157w, 1132w, 1087s, 1057s,

1028m, 1012w, 994w, 968w, 898w, 873w, 850w, 785m, 704m, 624m. 1 H-NMR (300 MHz, CDCl₃; assignments based on a HSQC spectrum): see *Table 4*; additionally, 8.65 (br. s, BzNH); 7.88 (d, J = 7.5, 2 arom. H); 7.66 – 7.59 (m, 1 arom. H); 7.56 – 7.49 (m, 2 arom. H, H–C(5)); 2.37 (s, AcS); 1.56, 1.36 (2s, Me₂C). 13 C-NMR (100 MHz, CDCl₃): see *Table 5*; additionally, 194.70 (s, SC=O); 166.95 (br. s, NHC=O); 133.28 (d); 133.03 (s); 129.02 (2d); 127.76 (2d); 114.25 (s, Me₂C); 30.66 (q, d); 27.09, 25.30 (2q, d). ESI-MS: 484.0 (10, [d + K] $^+$), 468.1 (100, [d + Na] $^+$), 446.1 (30, [d + H] $^+$). Anal. calc. for C₂₁H₂₃N₃O₆S (445.50): C 56.62, H 5.20, N 9.43; found: C 56.33, H 5.30, N 9.39.

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thiocytidine (**11**). A soln. of **10** (374 mg, 0.84 mmol) and **7** (485 mg, 0.84 mmol) in MeOH (15 ml) was treated with 7m NH₃ in MeOH (16 ml) and stirred for 5 h. The precipitate was filtered off, and the filtrate was evaporated. FC (CH₂Cl₂/MeOH 9:1) of the combined solids gave **11** (557 mg, 93%). Colourless solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.20. M.p. 213.7–215.1°. $[\alpha]_{\rm D}^{25} = -158.0$ (c = 1.0, CHCl₃). UV (CHCl₃): 245 (12600), 273 (11800). IR (ATR): 3328w, 3185w, 2957w, 2865w, 1638s, 1531m, 1486m, 1373s, 1289w, 1250m, 1208m, 1156m, 1131w, 1062s, 1000m, 978w, 936w, 875m, 829s, 783s, 732m, 677w, 610w. ¹H-NMR (500 MHz, CDCl₃; assignments based on a HSQC and a HMBC spectrum): see *Table* 6; additionally, 1.57 (*sept.*, J = 6.9, Me₂CH); 1.55, 1.52, 1.33, 1.32 (4s, 2 Me₂CO₂); 0.83 (d, J = 6.9, Me₂CH); 0.80, 0.79 (2s, Me₂CSi); 0.03, 0.02 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃; assignments based on a HSQC and a HMBC spectrum): see *Table* 7; additionally, 115.36, 112.86 (2s, 2 Me₂C); 34.23 (d, Me₂CH); 27.50, 27.37, 25.59, 25.40 (4q, 2 Me₂CO₂); 25.34 (s, Me₂CSi); 20.52, 20.45 (2g, Me₂CSi); 18.65, 18.60 (2g, Me₂CH); -3.04, -3.16 (2g, Me₂Si). HR-MALDI-MS: 759.3175 (47, [M + Na]⁺, C₃₃H₅₂N₆NaO₉SSi⁺; calc. 759.3178), 737.3346 (100, [M + H]⁺, C₃₃H₅₂N₆O₉SSi⁺; calc. 737.3359). Anal. calc. for C₃₃H₅₂N₆O₉SSi·H₂O (754.97): C 52.50, H 7.21, N 11.13; found: C 52.49, H 7.18, N 11.12.

X-Ray Analysis of **11**· *MeOH*. Crystals of **11**· MeOH suitable for X-ray analysis were obtained by slow evaporation of a MeOH soln. of **11**. Crystal data at 220 K for 2 $C_{33}H_{52}N_6O_9SSi\cdot CH_4O$ (1504.9); orthorhombic $P2_12_12_1$; a=15.3705(3), b=17.1904(4), c=30.4388(6) Å. V=8042.7(3) ų; Z=4; $D_{calc}=1.243$ Mg/m³. *Bruker-Nonius Kappa-CCD* with Mo K_a radiation ($\lambda=0.7107$ Å). The structure was solved by direct methods [40] and refined by full-matrix least-squares analysis [41] including an isotropic extinction correction. All heavy atoms were refined anisotropically (H-atoms isotropic, whereby H-positions are based on stereochemical considerations). R=0.0718, $R_w=0.1592$ for 941 parameters and 8719 reflections with $I>2\sigma(I)$ and $\tau<23.53^\circ$.

2′,3′-O-Isopropylidenecytidine-6-methyl-(6¹ \rightarrow 5′-S)-2′,3′-O-isopropylidene-5′-thiocytidine (12). A soln. of 11 (231 mg, 314 μmol) in THF (2.5 ml) was treated with (HF)₃·NEt₃ (1.0 ml, 6.28 mmol), stirred for 14 h, treated with 25% NH₄OH (1 ml), and evaporated. The aq. residue was extracted with CHCl₃ (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (CHCl₃/MeOH/NH₄OH 6:1:0.07) gave 12 (176 mg, 94%). Colourless solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 4:1) 0.31. [α] $_{\rm f}^{\rm p5}$ = - 116.1 (c = 0.5, CHCl₃/MeOH 1:1). IR (ATR): 3317w, 3183w, 2986w, 2925w, 2852w, 1639s, 1530m, 1487s, 1374s, 1293w, 1265m, 1208m, 1156m, 1054s, 1024s, 1003s, 875m, 820w, 789m, 751s, 664w, 611w. $^{\rm 1}$ H-NMR (400 MHz, CDCl₃; assignments based on a HSQC spectrum): see *Table* 6; additionally, 4.36 (br. s, OH); 1.55, 1.54, 1.35, 1.33 (4s, 2 Me₂C). $^{\rm 13}$ C-NMR (100 MHz, CDCl₃; assignments based on a HSQC spectrum): see *Table* 7; additionally, 115.05, 113.69 (2s, 2 Me₂CO₂); 27.52, 27.50, 25.55, 25.47 (4q, 2 Me_2 C). HR-MALDI-MS: 633.1722 (66, [M + K] $^{+}$, C₂₅H₃₄KN₆O₉S $^{+}$; calc. 633.1740), 617.1989 (100, [M + Na] $^{+}$, C₂₅H₃₄N₆NaO₉S $^{+}$; calc. 617.2000).

Cytidine-6-methyl-($6^1 \rightarrow 5'$ -S)-5'-thiocytidine (13). A soln. of 11 (55 mg, 75 µmol) in CF₃CO₂H/H₂O 1:1 (0.8 ml) was stirred for 3 h and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 4:5:1) gave 13 (33 mg, 86%). Colourless solid. R_f (CH₂Cl₂/MeOH/NH₄OH 4:5:1) 0.29. [α]₂⁵ = +22.4 (c = 0.2, H₂O). UV (H₂O): 273 (12250), 237 (10500). IR (ATR): 3329m, 3198m, 2928w, 1725w, 1637s, 1607s, 1527m, 1485s, 1385m, 1280w, 1210w, 1183w, 1093s, 1040s, 893w, 858w, 784m, 731w, 680w, 612w. ¹H-NMR (400 MHz, D₂O, 23°; assignments based on a DQF-COSY and a HSQC spectrum): see *Table 8*. ¹H-NMR (500 MHz, H₂O/D₂O 9:1, 23°): signals of NH: 7.3 − 7.0 (br. s, 0.25 H); 6.9 − 6.65 (br. s, 0.15 H). ¹³C-NMR (400 MHz, D₂O; assignments based on a DQF-COSY and a HSQC spectrum): see *Table 9*. HR-MALDI-MS: 537.1375 (32, [M + Na]⁺, C₁₉H₂₆N₆NaO₉S⁺; calc. 537.1374), 383.1121 (100, [M − C₃H₈O₄ + H]⁺, C₁₄H₁₉N₆O₅S⁺; calc. 383.1132). Anal. calc. for C₁₉H₂₆N₆O₉S·2 H₂O (550.54): C 41.45, H 5.49, N 15.27; found: C 41.44, H 5.30, N 15.17.

Table 6. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Cytidine Dinucleotides 11, 12, 14, and 15 in $CDCl_3$, and of 16 and 17 in $(D_6)DMSO^a$)

	11	12	14	15	16	17
Cytidine unit (I)					
H _a N-C(4/I)	10.80	9.83	10.64	10.16	7.41	7.67 - 7.46
$H_bN-C(4/I)$	5.42	5.24	5.40	5.55	7.32	7.67 - 7.46
H-C(5/I)	5.64	5.73	5.42	5.44	5.84	5.89
$CH_a-C(6/I)$	7.23 ^b)	7.16 ^b)	4.10	4.10	4.37	4.38
$CH_b-C(6/I)$	_ ′	_ ´	4.00	4.00	4.30	4.32
H-C(1'/I)	5.16	5.18	5.62	5.65	5.69	5.689
H-C(2'/I)	5.30	5.26	5.22	5.22	5.17	5.18
H-C(3'/I)	4.64	4.68	4.59	4.62	4.81	4.805
H-C(4'/I)	4.09	4.12	3.98	4.04 - 3.98	4.11	4.12
$H_a - C(5'/I)$	2.95	2.96	2.93	2.95	2.88	2.89
$H_b - C(5'/I)$	2.70	2.70	2.67	2.69	2.82	2.84
$J(H_a, H_b/I)$	7.4°)	7.4°)	12.5	12.5	14.6	14.7
J(1',2'/I)	2.1	1.7	2.3	2.0	< 1.0	< 1.0
J(2',3'/I)	6.7	6.8	6.9	6.9	6.3	6.3
J(3',4'/I)	6.6	6.1	6.6	ca. 6.6	4.0	4.0
J(4',5'a/I)	11.1	11.1	11.1	10.9	6.3	6.7
J(4',5'b/I)	2.1	1.9	1.6	1.5	7.7	7.9
J(5a',5'b/I)	15.4	15.4	15.4	15.5	13.8	14.1
Cytidine unit (I	I)					
H _a N-C(4/II)	9.41	9.39	9.30	9.37	7.24	7.67 - 7.46
$H_bN-C(4/II)$	7.14	7.29	7.22	7.37 - 7.27	7.24	7.67 - 7.46
H-C(5/II)	5.81	5.83	5.89	5.93	5.61	5.685
CH _a -C(6/II)	3.84	3.84	3.81	3.86	3.71	3.75
$CH_b-C(6/II)$	3.48	3.43	3.39	3.39	3.62	3.65
H-C(1'/II)	5.77	5.70	5.77	5.69	5.80	5.79
H-C(2'/II)	5.35	5.37	5.36	5.36	5.18	5.18
H-C(3'/II)	4.88	5.09	4.88	5.16	4.78	4.815
H-C(4'/II)	4.13	4.21	4.14	4.20	3.97	3.98
$H_a - C(5'/II)$	3.76	3.82	3.77	3.77	3.78 - 3.62	3.58
$H_b - C(5'/II)$	3.72	3.75	3.73	3.73	3.78 - 3.62	3.49
$J(H_a,H_b/II)$	14.0	14.2	13.9	14.3	14.5	14.4
J(1',2'/II)	< 1.0	1.6	< 1.0	1.6	< 1.0	< 1.0
$J(2',3'/\Pi)$	6.3	6.4	6.3	6.4	6.3	6.2
J(3',4'/II)	3.7	4.0	3.8	3.8	3.6	4.2
J(4',5'a/II)	5.5	2.7	5.5	3.1	6.4	5.6
J(4',5'b/II)	7.5	3.8	7.6	3.0	7.2	6.2
J(5a',5'b/II)	10.6	d)	10.7	12.0	d)	11.8

^{a)} Assignments based on DQF-COSY (for **11**), HSQC (for **11, 12, 14, 16**, and **17**), HMBC (for **11, 14, 16**, and **17**), and ROESY spectra (for **11, 12, 14**, and **15**). ^b) H-C(6/I). ^c) J(5,6/I). ^d) Not assigned.

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-{[(4-methoxyphenyl)(diphenyl)methoxy]methyl}-5'-thiocytidine (**14**). A soln. of **8** (50 mg, 67 µmol) in MeOH (1 ml) was treated with powdered K₂CO₃ (28 mg, 101 µmol), stirred for 10 min, treated with **7** (39 mg, 67 µmol), and stirred for 12 h. After evaporation, a suspension of the residue in CH₂Cl₂ was washed with half sat. NH₄Cl soln., dried (MgSO₄), and evaporated. FC (CH₂Cl₂/

Table 7. Selected ¹³C-NMR Chemical Shifts [ppm] of the Cytidine Dinucleotides 11, 12, 14, and 15 in CDCl₃, and of 16 and 17 in (D₆)DMSO^a)

	11	12	14	15	16	17
Cytidine unit (I)						
C(2/I)	156.01	155.97	157.15	157.88	155.70	154.99
C(4/I)	167.02	167.04	166.34	166.25	165.65	165.01
C(5/I)	96.04	96.10	96.86	96.90	93.36	93.29
C(6/I)	145.64	145.28	153.17	153.06	155.93	156.45
$CH_2-C(6/I)$	_	_	62.89	62.91	59.27	59.20
C(1'/I)	98.41	98.31	91.39	91.52	90.76	90.83
C(2'/I)	82.75	83.11	82.72	80.90	84.37	84.31 ^b)
C(3'/I)	83.84	83.99	84.02	84.13	84.28	84.16
C(4'/I)	89.27	90.22	89.23	88.77	88.93	88.88
C(5'/I)	30.31	30.94	30.38	30.64	32.80	32.96
Cytidine unit (II))					
C(2/II)	156.98	157.75	156.94	157.13	155.70	154.92
C(4/II)	165.63	165.71	165.68	165.73	164.84	164.15
C(5/II)	100.30	100.14	100.39	100.65	96.06	96.03
C(6/II)	149.21	149.83	149.19	149.23	151.85	152.55
$CH_2-C(6/II)$	31.64	31.72	31.41	31.25	31.75	31.86
C(1'/II)	91.00	91.46	90.97	91.38	90.88	90.75
C(2'/II)	84.45	83.84	84.58	84.39	84.37	84.23 ^b)
C(3'/II)	83.04	81.23	83.10	82.82	82.64	82.05
C(4'/II)	90.27	88.39	90.49	89.51	89.54	89.06
C(5'/II)	64.57	62.91	64.69	63.10	63.90	62.09

^{a)} Assignments based on DQF-COSY (for 11), HSQC (for 11, 12, 14, 16, and 17), and HMBC spectra (for 11, 14, 16, and 17). ^b) Assignments may be interchanged.

MeOH 14:1) gave **14** (43 mg, 62%). Yellow foam. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.28. [a]₂₅²⁵ = -170.6 (c = 0.9, CHCl₃). UV (CHCl₃): 243 (21400), 276 (15100). IR (ATR): 3332w, 2957w, 2933w, 2868w, 1640s, 1537s, 1509m, 1479m, 1380m, 1301w, 1250m, 1209m, 1179m, 1156m, 1063s, 1034s, 1002m, 937w, 901w, 873w, 829s, 779m, 739w, 701m, 631w. ¹H-NMR (600 MHz, CDCl₃; assignments based on a HSQC and a HMBC spectrum): see *Table* 6; additionally, 7.49 – 7.48 (m, 4 arom. H); 7.37 – 7.27 (m, 8 arom. H); 6.89 – 6.86 (m, 2 arom. H); 3.81 (s, MeO); 1.57 (sept., J = 6.9, Me₂CH); 1.54, 1.44, 1.33, 1.28 (4s, 2 Me₂CO₂); 0.83 (d, J = 6.9, Me₂CH); 0.80, 0.79 (2s, Me₂CSi); 0.03, 0.02 (2s, Me₂Si). ¹³C-NMR (150 MHz, CDCl₃; assignments based on a HSQC and a HMBC spectrum): see *Table* 7; additionally, 159.22 (s, MeOC); 143.65, 143.46, 134.43 (3s); 130.56 – 127.62 (several d); 115.11 (s, Me₂CO₂); 113.59 (d, 2 C); 112.80 (s, Me₂CO₂); 88.43 (s, Ph₂C); 55.43 (q, MeO); 34.26 (d, Me₂CH); 27.56, 27.38, 25.61, 25.39 (4q, 2 d 2 d 2 d 2 d 2 d 3.64 (d 3 d 3 d 3 d 3 d 4.36 (d 3 d 4.36 (d 3 d 4.36 d 4.36 (d 3 d 4.36 d 4.37 (d 4.36 d 4.37 (d 5 d 4.36 d 4.38 (d 5 d 5 d 4.39 (d 5 d 6 d 6 d 8 d 6 d 8 d 6 d 8 d 8 d 9 d 8 d 9

2',3'-O-Isopropylidenecytidine-6-methyl- $(6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-[(4-methoxyphenyl)(di-phenyl)methoxy]methyl-5'-thiocytidine (15). A soln. of 14 (125 mg, 120 μ mol) in THF (1 ml) was treated with (HF)₃·NEt₃ (0.39 ml, 2.4 mmol), stirred for 14 h, and neutralized with 25% aq. NH₄OH (0.2 ml). After evaporation, the aq. residue was extracted with CHCl₃ (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (CHCl₃/MeOH/NH₄OH 7:1:0.08) gave 15 (95 mg, 88%). Pale yellow solid. R_f (CHCl₃/MeOH/NH₄OH 7:1:0.08) 0.34. $[\alpha]_{25}^{15} = -162.1$ (c = -162.1)

Table 8. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Deprotected Cytidine Dinucleotides 13 and 18 in D₂O^a)

	13	18 ^b)		13	18
Cytidine unit (I)			Cytidine unit (II	i)	
H-C(5/I)	6.07	6.15	H-C(5/II)	6.06	5.97
$CH_a-C(6/I)$	7.70°)	4.63	$CH_a-C(6/II)$	3.91	3.86, 3.67
$CH_b-C(6/I)$	_	4.59	$CH_b-C(6/II)$	3.87	3.80, 3.61
H-C(1'/I)	5.88	5.47, 5.53	H-C(1'/II)	5.79	5.76
H-C(2'/I)	4.39	4.76, <i>4.84</i>	H-C(2'/II)	4.84	4.80
H-C(3'/I)	4.20	4.42	H-C(3'/II)	4.47	4.45
H-C(4'/I)	4.25	4.02 – 3.97, <i>4.15</i>	H-C(4'/II)	4.00	4.02 - 3.97
$H_a - C(5'/I)$	3.15	3.07, 3.24	$H_a-C(5'/II)$	3.89	3.89
$H_b - C(5'/I)$	2.99	2.91, 3.03	$H_b-C(5'/II)$	3.79	3.77
$J(H_a,H_b/I)$	7.6^{d})	15.1	$J(H_a, H_b/II)$	15.0	15.0, <i>15.0</i>
J(1',2'/I)	3.6	2.7, 3.0	J(1',2'/II)	3.6	3.6
J(2',3'/I)	5.4	6.5, 6.3	J(2',3'/II)	6.4	6.7
J(3',4'/I)	6.5	7.8, 7.8	J(3',4'/II)	6.3	5.0
J(4',5'a/I)	3.8	3.2, 3.8	J(4',5'a/II)	2.9	3.0
J(4',5'b/I)	6.7	8.4, 8.4	J(4',5'b/II)	5.6	5.8
J(5a'',5'b/I)	14.6	14.6, <i>14.1</i>	J(5a',5'b/II)	12.3	12.3

^{a)} Assignments based on DQF-COSY (for **13**), HSQC (for **13** and **18**), and HMBC spectra (for **18**). ^{b)} 9:1 Mixture of isomers. Data of the minor isomer in italics. ^{c)} H-C(6/I). ^{c)} J(5,6/I).

Table 9. Selected ¹³C-NMR Chemical Shifts [ppm] of the Deprotected Cytidine Dinucleotides **13** and **18** in D_2O^a)

	13	18		13	18		
Cytidine unit (I)			Cytidine unit (II)				
C(2/I)	156.67	156.36	C(2/II)	157.36	156.96		
C(4/I)	165.65	165.05	C(4/II)	164.70	164.39		
C(5/I)	95.98	94.67	C(5/II)	97.65	97.98		
C(6/I)	141.80	157.24	C(6/II)	153.42	154.18		
$CH_2-C(6/I)$	_	59.48	CH ₂ -C(6/II)	32.88	33.22		
C(1'/I)	90.94	92.19	C(1'/II)	91.59	91.94		
C(2'/I)	73.15	72.02	C(2'/II)	71.37	71.69		
C(3'/I)	71.59	72.43	C(3'/II)	69.46	69.79		
C(4'/I)	81.89	82.77	C(4'/II)	83.56	83.90		
C(5'/I)	32.68	32.88	C(5'/II)	61.53	61.89		

^{a)} Assignments based on DQF-COSY (for 13), HSQC (for 13 and 18), and HMBC spectra (for 18).

0.5, CHCl₃/MeOH 1:1). IR (ATR): 3331*w*, 3104*w*, 2988*w*, 2934*w*, 1635*s*, 1534*s*, 1509*m*, 1482*s*, 1382*s*, 1299*m*, 1251*m*, 1211*m*, 1180*m*, 1155*m*, 1062*s*, 1033*m*, 1001*m*, 871*m*, 833*w*, 790*w*, 749*s*, 703*m*, 666*w*, 631*w*.

¹H-NMR (300 MHz, CDCl₃): see *Table* 6; additionally, 7.49 – 7.44 (*m*, 4 arom. H); 7.37 – 7.27 (*m*, 8 arom. H, HN–C(4/II)); 6.88 – 6.85 (*m*, 2 arom. H); 3.80 (*s*, MeO); 1.57, 1.44, 1.35, 1.28 (4*s*, 2 Me₂C); HO–C(5′/II) hidden by the noise.
¹³C-NMR (75 MHz, CDCl₃): see *Table* 7; additionally, 159.16 (*s*, MeOC); 143.65, 143.48, 134.46 (3*s*); 130.58 – 127.59 (several *d*); 114.98, 113.60 (2*s*, 2 Me₂C); 113.60 (*d*, 2 C); 88.38 (*s*, Ph₂C); 55.43 (*q*, MeO); 27.54, 27.47, 25.59, 25.35 (4*q*, 2 Me₂C). HR-MALDI-MS: 935.3048 (20, [*M* +

K] $^+$, C₄₆H₅₂KN₆O₁₁S $^+$; calc. 935.3046), 919.3319 (100, [M + Na] $^+$, C₄₆H₅₂N₆NaO₁₁S $^+$; calc. 919.3307), 273.1274 (50, MMTr $^+$, C₂₀H₁₇O $^+$; calc. 273.1274).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl-($6^l \rightarrow 5'$ -S)-6-methyl-($6^l \rightarrow 5'$ -S)- $6^l \rightarrow 6^l \rightarrow 6^l$ (hydroxymethyl)-2',3'-O-isopropylidene-5'-thiocytidine (16). A soln. of 14 (156 mg, 150 µmol) in CH₂Cl₂ (1.8 ml) was treated with Cl₂CHCO₂H (200 µl) und Pr₃SiH (92 µl, 450 µmol), stirred for 1 h, diluted with CHCl₃ (20 ml), and washed with NaHCO₃ soln. The aq. layer was extracted with CHCl₃ (2×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (CHCl₂/ MeOH/NH₄OH 7:1:0.08) gave **16** (96 mg, 83%). Pale yellow foam. R_f (CHCl₃/MeOH/NH₄OH 7:1:0.08) 0.25. $[a]_D^{25} = -135.8$ (c = 0.5, CHCl₃/MeOH 1:1). IR (ATR): 3327w, 3186w, 2957w, 2865w, 1719w, 1640s, 1532s, 1473m, 1380m, 1309w, 1251m, 1209m, 1182w, 1157m, 1081s, 1060s, 998m, 983m, 873m, 828s, 784m. ¹H-NMR (400 MHz, (D₆)DMSO; assignments based on a HSQC and a HMBC spectrum): see *Table 6*; additionally, 5.9-5.6 (br. s, OH); 1.57 (sept., J = 6.9, Me₂CH); 1.46, 1.45, 1.27, 1.26 (4s, 2 Me₂CO₂); 0.83, 0.82 (2d, J = 6.9, Me_2 CH); 0.78, 0.77 (2s, Me₂CSi); 0.01, 0.00 (2s, Me₂Si). 13 C-NMR (100 MHz, (D₆)DMSO; assignments based on a HSQC and a HMBC spectrum): see *Table 7*; additionally, 112.37, 111.90 (2s, 2 Me_2CO_2); 33.65 (d, Me_2CH); 27.02 (2 C), 25.10, 25.00 (3q, 2 Me_2CO_2); $24.69 (s, Me_2CSi); 20.21, 20.16 (2q, Me_2CSi); 18.33, 18.28 (2q, Me_2CH); -3.31, -3.44 (2q, Me_2Si). HR-$ MALDI-MS: 805.3035 (55, $[M + K]^+$, $C_{34}H_{54}KN_6O_{10}SSi^+$; calc. 805.3023), 789.3311 (80, $[M + Na]^+$, $C_{34}H_{54}N_6NaO_{10}SSi^+$; calc. 789.3284), 767.3450 (100, $[M+H]^+$, $C_{34}H_{55}N_6O_{10}SSi^+$; calc. 767.3464).

2',3'-O-Isopropylidenecytidine-6-methyl- $(6^1 \rightarrow 5' - S)$ -6-(hydroxymethyl)-2',3'-O-isopropylidene-5'-thiocytidine (17). A soln. of 16 (125 mg, 163 µmol) in THF (2 ml) was treated with (HF) $_3$ · NEt $_3$ (0.53 ml, 3.26 mmol), stirred for 18 h, and neutralized with 7m NH $_3$ in MeOH (1.5 ml). The mixture was diluted with H $_2$ O and brine, and extracted with CHCl $_3$ /MeOH 9:1 (3 ×). The combined org. layers were washed with H $_2$ O and brine, dried (MgSO $_4$), and evaporated. FC (CHCl $_3$ /MeOH/NH $_4$ OH 5:1:0.06) gave 17 (97 mg, 95%). Colourless solid. R_f (CHCl $_3$ /MeOH/NH $_4$ OH 5:1:0.06) 0.33. [α] $_5^{25}$ = -189.1 (c = 0.5, CHCl $_3$ /MeOH 1:1). IR (ATR): 3323w, 3178w, 2986w, 2931w, 1724w, 1639s, 1529s, 1482m, 1381m, 1309w, 1263w, 1241w, 1208m, 1182w, 1157m, 1085m, 1049s, 1023s, 999s, 872m, 822w, 788m, 760w, 719w, 685w, 627w, 610w. 1 H-NMR (400 MHz, (D $_6$)DMSO; assignments based on a HSQC and a HMBC spectrum): see *Table* 6; additionally, 5.9 – 5.75 (m, 2 OH); 1.46, 1.27 (2s, 2 Me $_2$ C). 13 C-NMR (100 MHz, (D $_6$)DMSO; assignments based on a HMBC and a HSQC spectrum): see *Table* 7; additionally, 112.44, 112.25 (2s, 2 Me $_2$ C); 27.14, 27.02, 25.19, 25.01 (4q, 2 Me $_2$ C). HR-MALDI-MS: 663.1820 (29, [M + K] $^+$, C_{26} H $_{36}$ KN $_6$ O $_{10}$ S+; calc. 663.1845), 647.2093 (100, [M + Na] $^+$, C_{26} H $_{36}$ NaO $_{10}$ S+; calc. 647.2106).

Cytosine-6-methyl- $(6^1 \rightarrow 5'\text{-S})$ -6-(hydroxymethyl)-5'-thiocytidine (18). A soln. of 14 (140 mg, 135 µmol) in CF₃CO₂H/H₂O 1:1 (1 ml) was treated with $^1\text{Pr}_3\text{SiH}$ (250 µl, 1.22 mmol), stirred for 3 h, and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 2:3:0.075) gave 18 (55 mg, 75%). Colourless solid. R_f (CH₂Cl₂/MeOH/NH₄OH 4:5:1) 0.30. $[\alpha]_D^{55} = -8.0$ (c = 0.28, H₂O). UV (H₂O): 240 (10200), 272 (11100). IR (ATR): 3327m, 3200m, 2927w, 2870w, 1730w, 1638s, 1531s, 1482m, 1385m, 1266w, 1208w, 180w, 1093s, 1038s, 1000m, 894w, 838w, 786w, 730w, 698w, 678w. ^1H -NMR (600 MHz, D₂O, 23°; assignments based on a HSQC and a HMBC spectrum; 9:1 mixture of isomers): see *Table* 8. ^1H -NMR (500 MHz, H₂O/D₂O 9:1, 23°, excitation sculping; 9:1 mixture of isomers): signals of NH: 7.6 – 7.4 (br. s, 0.2 H); 7.25 – 6.8 (3 br. s, 0.15 H). ^{13}C -NMR (100 MHz, D₂O; assignments based on a HSQC and a HMBC spectrum): see *Table* 9. HR-MALDI-MS: 567.1482 (100, $[M + \text{Na}]^+$, C₂₀H₂₈N₆NaO₁₀S+; calc. 567.1480). Anal. calc. for C₂₀H₂₈N₆O₁₀S · 2 H₂O (580.57): C 41.38, H 5.56, N 14.48; found: C 41.46, H 5.28, N 14.56.

 N^4 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl- $(6^l \rightarrow 5'\text{-S})\text{-N}^4$ -benzoyl-2',3'-O-isopropylidene-6-[[(4-methoxyphenyl)(diphenyl)methoxy]methyl]-5'-thiocytidine (19). A soln. of 8 (931 mg, 1.25 mmol) in degassed THF/MeOH 1:1 (15 ml) was cooled to -10° and treated dropwise with a 1M soln. of MeSNa in degassed MeOH (2.5 ml, 2.5 mmol). The mixture was stirred for 3 h at -10° and poured into 0.1 M HCl (25 ml). The mixture was diluted with brine and extracted with AcOEt (3 ×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. A soln. of the residue and 7 (734 mg, 1.25 mmol) in degassed DMF (7 ml) was treated with LiBr (59 mg, 674 µmol) and Cs₂CO₃ (407 mg, 1.25 µmol), stirred for 4 h, and diluted with sat. NH₄Cl soln. The mixture was extracted with AcOEt. The combined org. layers were washed with H₂O (3 ×) and

brine, dried (MgSO₄), and evaporated. FC (AcOEt/pentane/MeOH 1:1:0.004) gave 19 (932 mg, 60%). Yellow foam. R_f (AcOEt/pentane/MeOH 1:1:0.004) 0.20. $[\alpha]_D^{25} = -63.4$ (c = 0.5, CHCl₃). IR (ATR): 3430 – 3150w (br.), 2955w, 2865w, 1674s, 1608s, 1565s, 1504w, 1473m, 1447m, 1415w, 1353s, 1313m, 1300w, 1248s, 1210m, 1180m, 1155m, 1063s, 1033s, 1001m, 976m, 900w, 871m, 828s, 778m, 766w, 746w, 699s, 660w. ¹H-NMR (400 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 8.65 (br. s, 2 BzNH); 7.87 – 7.86 (m, 4 arom. H); 7.62 – 7.23 (m, 18 arom. H, H–C(5/I), H–C(5/II)); 6.87 – 6.83 (m, 2 arom. H); 6.01 (br. s, H–C(1/II)); 5.94 (br. s, H–C(1/I)); 5.35 (dd, J = 6.4, 0.9, H–C(2/II)); 5.28 (dd, J = 6.4, 0.8, H-C(2'/I)); 5.02 (dd, J = 6.4, 4.2, H-C(3'/I)); 4.94 (dd, J = 6.4, 4.0, H-C(3'/II)); 4.27-4.18 $(m, CH_2-C(6/I), H-C(4'/I), H-C(4'/II)); 3.86 (dd, J = 10.6, 7.2, H_a-C(5'/II)); 3.80 (dd, J = 10.6, 5.7, H_a-C(5'/II)); 3.8$ H_b -C(5'/II)); 3.79, 3.68 (2d, J = 14.3, CH_2 -C(6/II)); 3.09 (dd, J = 13.8, 7.6, H_a -C(5'/I)); 3.01 (dd, J = 13.8, 7.6, H_a -C(5'/I)); 3.01 (dd, J = 13.8, 7.6, H_a -C(5'/I)); 3.01 (dd, J = 13.8, 7.6, H_a -C(5'/II)); 3.01 (dd, J = 13.8, H_a -C(5'/II)); 3.01 (dd, J13.8, 6.3, H_b -C(5'/I)); 1.59 (sept., J = 6.9, Me_2CH); 1.54, 1.48, 1.34, 1.31 (4s, 2 Me_2CO_2); 0.84 (d, J =6.9, Me₂CH); 0.81 (s, Me₂CSi); 0.06, 0.04 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 166.13, 165.91 (2 br. s, 2 NHC=O); 162.45, 161.77 (2 br. s, C(4/I), C(4/II); 159.07 (s, MeOC); 157.70 (br. s, C(6/II)); 157.25 (br. s, C(6/I)); 155.42 (br. s, C(2/II)); 155.30 (br. s, C(2/I); 143.43, 143.31, 134.31 (3s); 133.30, 133.20 (2d); 130.72 – 127.38 (several d); 113.63 (s, Me,CO_s); 113.46 (2d); 113.23 (s, Me₂CO₂); 98.07, 97.65 (2 br. d, C(5/I), C(5/II)); 93.13 (d, C(1'/I)); 92.63 (d, C(1'/I)); II)); 90.62 (d, C(4'II)); 89.56 (d, C(4'I)); 88.58 (s, Ph_2C); 84.73 (d, C(3'I)); 84.69 (d, C(2'I)); 84.29 (d, C(2'/II); 83.00 (d, C(3'/II)); 64.12 (t, C(5'/II)); 62.88 (t, CH_2 –C(6/I)); 55.23 (q, MeO); 34.39 (t, C(5'/I)); 34.13 (d, Me₂CH); 33.80 (t, CH₂-C(6/II)); 27.24, 27.15, 25.41, 25.33 (4q, 2 Me₂CO₂); 25.27 (s, Me₂CSi); 20.40, 20.35 (2q, Me_2 CSi); 18.52, 18.48 (2q, Me_2 CH); -3.23, -3.28 (2q, Me_2 Si); 2 signals of C(1) of Bz hidden by the ds at 133.30, 133.20. HR-MALDI-MS: 1269.5009 (62, $[M + Na]^+$, $C_{68}H_{78}N_6NaO_{13}SSi^+$; calc. 1269.4981), 273.1274 (100, MMTr⁺, C₂₀H₁₇O⁺; calc. 273.1274).

 N^4 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl- $(6^l \rightarrow 5'-S)-N^4$ -benzoyl-2',3'-O-isopropylidene-6-{[(methylsulfonyl)oxy]methyl}-5'-thiocytidine (20). A soln. of 19 (630 mg, 505 μmol) in CH₂Cl₂ (4.5 ml) was treated sequentially with Cl₂CHCO₂H (0.5 ml) and Pr₃SiH (310 µl, 1.52 mmol), stirred for 75 min, and poured into sat. NaHCO₃ soln. The mixture was extracted with $CH_2Cl_2(3\times)$. The combined org. layers were washed with H_2O and brine, dried (MgSO₄), and evaporated. A soln. of the residue in CH₂Cl₂ (5 ml) was cooled to 0°, treated with EtNⁱPr₂ (106 μl, 606 μmol) and dropwise with a soln. of Ms₂O (97 mg, 556 μmol) in CH₂Cl₂ (2 ml). The mixture was stirred for 3 h at 0° , poured into ice/water, and extracted with CH₂Cl₂ (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. FC (AcOEt/pentane/MeOH $2:1:0 \rightarrow 2:1:0.003$) gave **20** (420 mg, 79%). Yellow foam. R_f (CH₂Cl₂/MeOH 19:1) 0.35. $[\alpha]_D^{25} = -51.8$ $(c = 0.5, CHCl_3).\ IR\ (ATR): 3430 - 3150w\ (br.), 3156w, 3129w, 3063w, 2953w, 2865w, 1673s, 1608s, 1564s, 3129w, 3120w, 3120$ 1475m, 1417w, 1352s, 1247s, 1210m, 1176m, 1157m, 1066s, 1001m, 972m, 950w, 901w, 871w, 829s, 798m, 780m, 701m, 662m. ¹H-NMR (400 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 8.85 – 8.4 (br. s, 2 BzNH); 7.87 – 7.86 (m, 4 arom. H); 7.62 – 7.23 (m, 6 arom. H, H–C(5/I), H–C(5/II)); 6.04(d, J = 1.0, H-C(1'/II)); 5.78(d, J = 1.0, H-C(1'/I)); 5.36(dd, J = 6.4, 1.0, H-C(2'/II)); 5.32(dd, J = 6.4, 1.0, H-C(1'/II)); 5.32(dd, J = 6.4, H-C(1'/II)); 5.32(dd, J6.5, 1.0, H-C(2/I); $5.32, 5.20 (2d, J = 13.5, CH_2-C(6/I))$; 5.05 (dd, J = 6.5, 3.9, H-C(3/I)); (dd, J = 6.4, 1.0, H-C(3/I)); (dd, J = 6.4, H-C(3/I)); 4.0, H-C(3'/II); 4.38 (ddd, J = 7.0, 6.3, 4.0, H-C(4'/I)); 4.21 (ddd, J = 7.2, 5.6, 4.0, H-C(4'/II)); 3.87 (dd, J = 7.2, 5.6, 4.0, H-C(4'/II)); 4.21 (ddd, J = 7.2, 5.6, 4.0, H-C(4'/II)); 4.21 (dd $J = 10.6, 5.6, H_a - C(5'/II)); 3.81 (dd, J = 10.6, 7.3, H_b - C(5'/II)); 3.84, 3.72 (2d, J = 14.2, CH_2 - C(6/II));$ $3.20 \ (s, \text{MsO}); \\ 3.12 \ (dd, J = 13.9, 7.5, \text{H}_a - \text{C}(5'/\text{I})); \\ 3.03 \ (dd, J = 13.9, 6.2, \text{H}_b - \text{C}(5'/\text{I})); \\ 1.58 \ (sept., J = 6.9, 1.5); \\ 1.58 \ (sept., J = 6.9, 1.$ Me_2CH); 1.57, 1.55, 1.35 (6 H) (3s, 2 Me_2CO_2); 0.85 (d, J = 6.9, Me_2CH); 0.82 (s, Me_2CSi); 0.07, 0.05 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 166.40 (br. s, 2 NHC=O); 162.57, 161.80 (2 br. s, C(4/I), C(4/II)); 157.72 (br. s, C(6/II)); 155.52 (br. s, C(2/II)); 154.78 (br. s, C(6/I)); 152.02 (br. s, C(2/I)); 133.48, 133.20 (2d); 132.63 (br. s, 2 C); 129.09 – 127.68 (several d); 114.07, 113.29 (2s, 2 Me₂CO₂); 98.52, 98.22 (2 br. d, C(5/I), C(5/II)); 93.18 (d, C(1'/I)); 92.64 (d, C(1'/II)); 90.62 (d, C(4'/II)); 89.92 (d, C(4'/I)); 84.73 (d, C(3'/I)); 84.53 (d, C(2'/I)); 84.26 (d, C(2'/II)); 82.95 (d, C(3'/II); $64.29(t, CH_2-C(6/I))$; 64.06(t, C(5'/II)); 38.62(q, MsO); 34.14(t, C(5'/I)); $34.14(d, Me_2CH)$; 33.69 (t, CH₂-C(6/II)); 27.25, 27.10, 25.38, 25.29 (4q, 2 Me₂CO₂); 25.29 (s, Me₂CSi); 20.41, 20.36 (2q, Me_2CSi); 18.52, 18.49 (2q, Me_2CH); -3.24, -3.27 (2q, Me_2Si). HR-MALDI-MS: 1075.3566 (44, [M + 1053.3764), 730.3166 (100, $[M - C_{13}H_{12}N_3O_5S]^+$, $C_{36}H_{52}N_3O_9SSi^+$; calc. 730.3188). Anal. calc. for C₄₉H₆₄N₆O₁₄S₂Si (1053.29): C 55.88, H 6.12, N 7.98; found: C 56.01, H 6.12, N 7.91.

propylidene-6-{[(4-methoxyphenyl)(diphenyl)methoxy]methyl}-5'-thiocytidine (21). A soln. of 8 (504 mg, 674 μmol) in degassed THF/MeOH 1:1 (7 ml) was cooled to -10° and treated dropwise with a 1M soln. of MeSNa in degassed MeOH (1.35 ml, 1.35 mmol). The mixture was stirred for 3 h at -10° and poured into 0.1M HCl (14 ml). The mixture was diluted with brine and extracted with AcOEt (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. A soln. of the residue and 9 (373 mg, 674 µmol) in degassed DMF (9 ml) was treated with LiBr (59 mg, 674 μmol) and Cs₂CO₃ (220 mg, 674 μmol), stirred for 4 h, and poured into sat. NH₄Cl soln. The mixture was extracted with AcOEt. The combined org. layers were washed with H₂O (3×) and brine, dried (MgSO₄) and evaporated. FC (AcOEt/pentane/MeOH 3:2:0.005) gave 21 (486 mg, 62%). Yellow foam. $R_{\rm f}$ (AcOEt/pentane 2:1) 0.25. $[a]_{\rm D}^{25} = -45.9$ (c = 0.5, CHCl₃). IR (ATR): 3430-3160w (br.), 3059w, 2986w, 2931w, 1674s, 1607s, 1564s, 1505m, 1476m, 1448m, 1416m, 1352s, 1314m, 1303m, 1244s, 1210m, 1180m, 1155m, 1090s, 1061s, 1001m, 982m, 900w, 870m, 831m, 789w, 765w, 746w, 698s, 662w, 630w. ¹H-NMR (400 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 8.9-8.6 (br. s, 2 BzNH); 7.91 – 7.84 (m, 4 arom. H); 7.62 – 7.23 (m, 18 arom. H, H–C(5/I), H–C(5/II)); 6.89 – 6.83 (m, 2 arom. H); 6.01 (br. s, H–C(1'/II)); 5.96 (br. s, H–C(1'/I)); 5.35 (dd, J = 6.4, 0.7, H–C(2'/II)); 5.28 (dd, J = 6.4, 0.7, H–C(2'/II); 5.28 (dd, J = 6.4, 0.7, H–C(2'/II)); 5.28 (dd, J = 6.4, 0.7, H–C(1'/II)); 5.28 (dd, J = 6.4, 0.7, H–C(1'/II 6.5, 0.7, H-C(2/I); 5.05 (dd, J = 6.5, 4.2, H-C(3/I)); 4.98 (dd, J = 6.4, 3.5, H-C(3/II)); 4.28-4.25 (m, J = 6.4, J = 6.4 $CH_2-C(6/I)$, H-C(4/I); 4.17 (td, $J \approx 7.1$, 3.8, H-C(4/II)); 3.77, 3.68 (2d, J = 13.5, $CH_2-C(6/II)$); 3.76 (s, MeO); 3.33 $(dd, J = 13.6, 7.2, H_a-C(5'/II))$; 3.27 $(dd, J = 13.6, 7.2, H_b-C(5'/II))$; 3.10 (dd, J = 13.8, 7.8, 1.0) $H_a-C(5'/I)$; 2.99 (dd, J=13.8, 6.0, $H_b-C(5'/I)$); 2.29 (s, AcS); 1.53, 1.48, 1.35, 1.31 (4s, 2 Me₂C). ¹³C-NMR (100 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 194.89 (s, SC=O); 166.40, 165.73 (2 br. s, 2 NHC=O); 162.43, 161.91 (2 br. s, C(4/I), C(4/II)); 159.08 (s, MeOC); 157.56 (br. s, $C(6/\Pi)$; 157.25 (br. s, $C(6/\Pi)$); 155.48 (br. s, $C(2/\Pi)$); 155.26 (br. s, $C(2/\Pi)$); 143.46, 143.33, 134.31 (3s); 133.18, 133.13 (2d); 130.61 – 127.37 (several d); 113.64, 113.46 (2s, 2 Me₂C); 113.46 (d, 2 C); 98.55, 97.71 (2 br. d, C(5/I), C(5/II); 93.17 (d, C(1'/I)); 92.81 (d, C(1'/II)); 89.77 (d, C(4'/I)); 89.26 (d, C(4'/II)); 88.61 (s, Ph_2C); 85.00 (d, C(3'/II)); 84.96 (d, C(2'/II)); 84.72 (d, C(3'/I)); 84.69 (d, C(2'/I)); 62.92 (t, $CH_2-C(6/I)$); 55.23 (q, MeO); 34.35 (t, C(5'/I)); 33.85 (t, CH₂-C(6/II)); 31.57 (t, C(5'/II)); 30.54 (q, MeC=O); 27.16, 27.10, 25.35, 25.24 (4q, 2 Me₂C); 2 signals of C(1) of Bz hidden by the ds at 133.18, 133.13. HR-MALDI-MS: 1185.3731 (49, $[M + Na]^+$, $C_{62}H_{62}N_6NaO_{13}S_2^+$; calc. 1185.3708), 273.1274 (100, MMTr⁺, $C_{20}H_{17}O^+$; calc. 273.1274). Anal. calc. for $C_{62}H_{62}N_6O_{13}S_2 \cdot H_2O$ (1181.33): C 63.04, H 5.46, N 7.11; found: C 62.97, H 5.63, N 7.35,

 N^4 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl- $[(6^1 \rightarrow 5'-S)-N^4-benzoyl-2',3'-O-isopropylidene-5'-thiocytidine-6-methyl]_2-(6^1 \rightarrow 5'-S)-N^4-benzoyl-2',3'-O-isopropylidene-5'-thiocytidine-6-methyl-2'-(6^1 \rightarrow 5'-S)-N^4-benzoyl-2'-(6^1 \rightarrow 5'-S$ isopropylidene-6-{[(4-methoxyphenyl)(diphenyl)methoxy]methyl}-5'-thiocytidine (22). A soln. of 19 $(172 \text{ mg}, 155 \text{ }\mu\text{mol})$ in THF/MeOH 1:1 (3 ml) was cooled to -10° and treated dropwise with a 1m soln. of MeSNa in degassed MeOH (310 μ l, 310 μ mol). The mixture was stirred for 3 h at -10° , poured into $0.1 \,\mathrm{M}$ HCl (3 ml), and extracted with AcOEt (3×). The combined org. layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. A soln. of the residue and 21 (163 mg, 155 µmol) in degassed DMF (5 ml) was treated with LiBr (14 mg, 155 µmol) and Cs₂CO₃ (51 mg, 155 µmol), stirred for 2 h, and diluted with sat. NH₄Cl soln. The mixture was extracted with AcOEt $(3 \times)$. The combined org. layers were washed with $H_2O(3\times)$ and brine, dried (MgSO₄), and evaporated. FC (AcOEt/PrOH 99:1 \rightarrow 49:1) gave **22** (166 mg, 51%). Yellow foam. R_f (AcOEt) 0.56. $[a]_{15}^{25} = -76.1$ (c = 0.75, CHCl₃). UV (CHCl₃): 262 (97200), 316 (40800). IR (ATR): 3400 – 3000w (br.), 2968w, 2931w, 1669s, 1607s, 1563s, 1506m, 1473m, 1447m, 1414w, 1352s, 1314m, 1245s, 1209m, 1180m, 1155m, 1088s, 1059s, 1000m, 981m, 900w, 870m, 831m, 787w, 765w, 746w, 699s, 660w, 630w, 595w. 1H-NMR (500 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 9.1 – 8.5 (br. s, 4 BzNH); 7.88 – 7.81 (m, 8 arom. H); 7.60 – 7.23 (m, 24 arom. H, H-C(5/I-IV)); 6.85-6.83 (m, 2 arom. H); 6.05, 6.02 (2 br. s, H-C(1'/II), H-C(1'/III));6.02 (br. s, H–C(1'/IV)); 5.92 (br. s, H–C(1'/I)); 5.33 (br. d, $J \approx 7.2$, H–C(2'/IV)); 5.32 (br. d, $J \approx 7.5$), 5.30 (br. d, J = 6.5) (H–C(2/II), H–C(2/III)); 5.25 (br. d, J = 6.5, H–C(2/I)); 5.07 – 5.01 (m, H–C(3/J) II), H–C(3'/III)); 4.99 (br. dd, J = 6.0, 3.9, H–C(3'/I)); 4.92 (br. dd, J = 5.7, 3.7, H–C(3'/IV)); 4.322, 4.315, (2td, J = 7.0, 3.7, H-C(4'/II), H-C(4'/III)); 4.23 (td, J = 7.0, 4.0, H-C(4'/I)); 4.21 (s, CH₂-C(6/I)); $4.19 (ddd, J = 7.0, 6.0, 4.4, H-C(4'IV)); 3.80 (dd, J = 10.6, 5.6, H_a-C(5'IV)); 3.76 (s, MeO); 3.86 - 3.67 (s, MeO); 3.86 (s,$ $(m, CH_2-C(6/II-IV), H_b-C(5'/IV)); 3.08-3.01 (m, 2 H-C(5'/I-III)); 1.57 (sept., J = 6.9, Me₂CH);$ 1.55, 1.54, 1.53, 1.46, 1.34 (6 H), 1.33, 1.29 (7s, 4 Me₂CO₂); 0.84 (d, J = 6.9, Me_2 CH); 0.81 (s, Me₂CSi); 0.06, 0.04 (2s, Me₂Si). ¹³C-NMR (125 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 167.74 – 166.10 (4 br. s, 4 NHC=O); 162.50, 162.30 – 161.68 (4 br. s, C(4/I–IV)); 159.07 (s, MeOC); 157.66 – 156.84 (4 br. s, C(6/I–IV)); 155.74 – 154.87 (4 br. s, C(2/I–IV)); 143.41, 143.30, 134.30 (3s); 133.15, 133.05, 133.01 (2 C) (3d); 130.58 – 127.38 (several d); 113.66, 113.59, 113.46, 113.23 (4s, 4 Me₂CO₂); 113.46 (d, 2 C); 99.14 – 97.67 (4 br. d, C(5/I–IV)); 93.16 (d, C(1'/I)); 92.61 – 92.57 (3d, C(1'/III–IV)); 90.55 (d, C(4'/IV)); 90.06, 89.86 (2d, C(4'/II), C(4'/III)); 89.44 (d, C(4'/I)); 88.56 (s, Ph₂C); 84.85, 84.83 (2d, C(2'/II), C(2'/III), C(3'/II), C(3'/II)); 84.68 (d, C(2'/I), C(3'/I)); 84.29 (d, C(2'/IV)); 83.00 (d, C(3'/IV)); 64.11 (t, C(5'/IV)); 62.88 (t, CH₂—C(6/I)); 55.24 (q, MeO); 34.19 (d, Me₂CH); 34.32, 34.14 (3t, CH₂—C(6/II–IV)); 33.82, 33.81, 33.69 (3t, C(5'/I–III)); 27.27, 27.21, 27.18, 27.15, 25.42, 25.34, 25.29, 25.27 (8q, 4 Me₂CO₂); 25.23 (s, Me₂CSi); 20.41, 20.36 (2q, Me₂CSi); 18.53, 18.49 (2q, Me₂CH); — 3.21, — 3.27 (2q, Me₂Si); 4 signals of C(1) of Bz hidden by the ds at 133.15 – 133.01. HR-MALDI-MS: 2116.7098 (24, [M + K]+, C₁₀₈H₁₂₀KN₁₂O₂₃S₃Si+; calc. 2116.7191), 2100.7383 (100, [M + Na]+, C₁₀₈H₁₂₀N₁₂NaO₂₃S₃Si+; calc. 2100.7452). Anal. calc. for C₁₀₈H₁₂₀N₁₂O₂₃S₃Si · H₂O (2096.47): C 61.87, H 5.87, N 8.02; found: C 61.57, H 6.00, N 7.89.

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylidenecytidine-6-methyl-[$(6^1 \rightarrow 5'-S)$ -2',3'-O-isopropylidene-5'-thiocytidine-6-methyl $J_{2^-}(6^l \to 5'-S)$ -2',3'-O-isopropylidene-6- $\{[(4\text{-methoxyphe-})^2, (3^l \to 5'-S)]$ nyl)(diphenyl)methoxy]methyl]-5'-thiocytidine (23). A soln. of 22 (199 mg, 96 µmol) in CH₂Cl₂/sat. NH₃ in MeOH 1:5 (6 ml) was stirred in a pressure tube for 7 h and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 90:9:1) gave 23 (122 mg, 77%). Pale yellow foam. $R_{\rm f}$ (CH₂Cl₂/MeOH/NH₄OH 90:9:1) 0.26. $[\alpha]_{\rm D}^{25}$ = -186.1 (c = 0.75, CHCl₃). UV (CHCl₃): 241 (30700), 276 (28200). IR (ATR): 3463w, 3333w, 3186w, 3054w, 2985w, 2936w, 1638s, 1534s, 1511m, 1475w, 1380m, 1373m, 1304w, 1251m, 1209m, 1180m, 1156m, 1061s, 1000m, 871m, 830m, 786m, 757w, 733m, 701m, 591w, 575w. 1H-NMR (500 MHz, CDCl₃; assignments based on a HMBC, HSQC, and a ROESY spectrum): 10.78/5.35 (2 br. s, H₂N-C(4/I)); 10.08/ $7.29 \text{ (2 br. } s, \text{ H}_2\text{N}-\text{C(4/II)}); 10.04/7.29 \text{ (2 br. } s, \text{ H}_2\text{N}-\text{C(4/III)}); 9.43/7.01 \text{ (2 br. } s, \text{ H}_2\text{N}-\text{C(4/IV)}); 7.50-7.48$ (m, 4 arom. H); 7.38 - 7.29 (m, 8 arom. H); 6.91 - 6.88 (m, 2 arom. H); 6.04 (s, H-C(5/II)); 5.88 (s, H-C(5/II));III); 5.72 (s, H–C(1'/IV)); 5.71 (d, J = 1.3, H–C(1'/II)); 5.67 (s, H–C(5/IV)); 5.66 (d, J = 1.4, H–C(1'/II)); 5.72 (s, H–C(1'/IV)); 5.65 (d, J = 1.4, H–C(1'/II)); 5.72 (s, H–C(1'/IV)); 5.73 (s, H–C(1'/IV)); 5.74 (d, J = 1.3, H–C(1'/II)); 5.75 (s, H–C(5/IV)); 5.75 (d, J = 1.4, H–C(1'/II)); 5.77 (s, H–C(5/IV)); 5.78 (d, J = 1.4, H–C(1'/II)); 5.79 (s, H–C(5/IV)); 5.79 (s, H III)); 5.60 (br. s, H–C(1'/I)); 5.44 (s, H–C(5/I)); 5.301 (d, $J \approx 6.5$, H–C(2'/IV)); 5.299 (d, J = 6.5, H–C(2'/IV)); 5.299 (d, J = 6.5, H–C(2'/IV)); 5.290 (d, J = 6.5, H–C(2'/IV); J = 6.5, H–C(2'/IV); J = 6.5, H–C(2'/IV); J = 6.5, H–C(2'/IV); J = 6.5, H–C(2' II)); 5.25 (dd, J = 6.5, 1.3, H-C(2'/III)); 5.15 (dd, J = 6.5, 1.3, H-C(2'/I)); 4.83 (dd, J = 6.1, 4.0, H-C(3'/I)); 4.83 (dd, J = 6.1, 4.0IV)); 4.67 (t, J = 6.5, H-C(3'/II)); 4.61 $(br. t, J \approx 7.2, H-C(3'/III))$; 4.60 (t, J = 6.9, H-C(3'/I)); 4.15 – 4.03 (m, H-C(4'/I-IV)); 4.01, 3.94 $(2d, J=11.8, CH_2-C(6/I))$; 4.00 $(d, J\approx 11.5, CH_a-C(6/II))$; 3.92 $(d, J = 13.8, CH_a-C(6/III)); 3.83 (s, MeO); 3.77 (dd, J = 10.2, 5.4, H_a-C(5'/IV)); 3.74 - 3.68 (m, H_b-C(5'/IV)); 3.74 (m, H_b-C(5'/IV)); 3.74 (m, H_b-$ IV), $CH_a-C(6/IV)$); 3.36, 3.35 (2d, J = 13.5, $CH_b-C(6/II-IV)$); 3.00 (dd, J = 15.6, 11.1, $H_a-C(5/I)$); $2.95 (dd, J = 15.4, 11.0, H_a - C(5'/II)); 2.87 (br. t, J = 13.2, H_a - C(5'/III)); 2.74 (br. d, J = 15.0, H_b - C(5'/I),$ H_b -C(5'/II)); 2.65 (br. d, J = 14.3, H_b -C(5'/III)); 1.57 (sept., J = 6.8, Me_2CH); 1.57, 1.52, 1.51, 1.42, 1.35, 1.31, 1.29, 1.27 (8s, $4 \text{ Me}_2\text{CO}_2$); 0.79 (d, J = 6.9, $Me_2\text{CH}$); 0.76 (s, $Me_2\text{CSi}$); 0.04, 0.01 (2s, $Me_2\text{Si}$). ¹³C-NMR (125 MHz, CDCl₃; assignments based on a HMBC and a HSQC spectrum): 166.16, 166.07, 166.03, 165.51 (4s, C(4/I – IV)); 159.02 (s, MeOC); 157.84 (s, C(2/II)); 157.69 (s, C(2/III)); 156.99 (s, C(2/III)) I)); 156.52 (s, C(2/IV)); 152.81 (s, C(6/I)); 148.67 (s, C(6/IV)); 148.29 (s, C(6/II)); 148.20 (s, C(6/III)); 143.33, 143.17, 134.21 (3s); 130.34 – 127.51 (several d); 115.03, 114.85, 114.68, 112.64 (4s, 4 Me₂CO₂); 113.48 (d, 2 C); 101.13 (d, C(5/II)); 100.99 (d, C(5/III)); 100.20 (d, C(5/IV)); 96.89 (d, C(5/I)); 91.32 (d, C(1'I); 90.59 (d, C(1'IV)); 89.57 – 89.44 (5d, C(1'II), C(1'III), C(4'II-IV)); 89.29 (d, C(4'I)); 88.15 (s, Ph₂C); 84.12 (d, C(2'/IV)); 83.88–83.84 (3d, C(3'/I–III)); 83.04–82.95 (3d, C(2'/II), C(2'/III), C(3'/I-III)); IV)); 82.48 (d, C(2'/I)); 64.33 (t, C(5'/IV)); 62.79 $(t, CH_2-C(6/I))$; 55.32 (q, MeO); 34.06 (d, Me_2CH) ; $31.41(t, CH_2-C(6/IV)); 31.18(t, CH_2-C(6/III)); 30.89(t, CH_2-C(6/II)); 30.53(t, C(5'/I)); 30.32(t, C(5'/I)); 30.53(t, C(5'/I)); 30.54(t, C(5'/$ II)); 30.06 (t, C(5'/III)); 27.63, 27.61, 27.38 (2 C), 25.64 (2 C), 25.43 (2 C) (5q, 4 Me₂CO₂); 25.15 (s, 4) Me_2CSi); 20.34, 20.32 (2q, Me_2CSi); 18.52, 18.50 (2q, Me_2CH); -3.01, -3.16 (2q, Me_2Si). HR-MALDI-MS: 1684.6426 (100, $[M + Na]^+$, $C_{80}H_{104}N_{12}NaO_{19}S_3Si^+$; calc. 1684.6403), 1662.6611 (99, $[M + H]^+$, $C_{80}H_{105}N_{12}O_{19}S_3Si^+$; calc. 1662.6584).

Cytidine-6-methyl- $[(6^l \rightarrow 5'-S)-5'-thiocytidine-6-methyl]_2-(6^l \rightarrow 5'-S)-6-(hydroxymethyl)-5'-thiocytidine (24). A soln. of 23 (33 mg, 20 µmol) in HCO₂H/H₂O 4:1 (1 ml) was treated with <math>^{\rm i}$ Pr₃SiH (25 µl, 122 µmol), stirred for 20 h and evaporated at 25°. The residue was treated with NH₄OH (0.1 ml) and H₂O (1 ml) and lyophilised. FC (CHCl₃/MeOH/H₂O 1:3:0.3, NH₂ phase) gave 24 (15 mg, 69%) as a colour-

less solid. $R_{\rm f}$ (CHCl₃/MeOH/H₂O 1:3:0.3, NH₂ phase) 0.22. $[\alpha]_{\rm D}^{25} = -91.8$ (c = 0.25, DMSO). UV (H₂O): 243 (18500), 272 (19500). IR (ATR): 3333m, 3201m, 2923w, 2870w, 1637s, 1531s, 1481m, 1384m, 1268w, 1093s, 1034s, 999s, 898w, 839w, 787w, 695w, 611w. 1H-NMR (600 MHz, (D₆)DMSO; assignments based on a DQF-COSY, HMBC, and HSQC spectrum): 8.00 - 7.10, 7.40, 7.27, 7.19, 7.14 (5 br. s, H₂N-C(4/ I-IV); 5.90 (s, H-C(5/I)); 5.72, 5.65 (2s, H-C(5/II, III)); 5.65 (s, H-C(5/IV)); 5.49 (br. s, H-C(1/IV)); 5.45 (br. s, H–C(1'/II, III)); 5.25 (d, J = 2.6, H–C(1'/IV)); 5.22 – 4.69 (br. s, OH); 4.56 (dd, J = 5.9, 4.0, H-C(2'/IV); 4.52 - 4.50 (m, H-C(2'/I-III)); 4.37 (br. s, $CH_2-C(6/I)$); 4.26 - 4.18 (m, H-C(3'/I-III)); $4.15 (t, J = 5.9, H-C(3'/IV)); 3.82-3.70 (m, H-C(4'/I-IV), CH_a-C(6/II-IV)); 3.65-3.58 (CH_b-C(6/II-IV)); 3.65-3.58 (CH_b-C(6/II-I$ II-IV), H_a -C(5'/IV)); 3.44 (dd, J = 11.8, 5.1, H_b -C(5'/IV)); 2.85 - 2.69 (m, 2 H-C(5'/I-III)). 1 H-NMR $(300 \text{ MHz}, 2 \text{ mg in } D_2O, 23^\circ)$: 6.06 (s, H-C(5/I)); 5.86 (s, 1 H), 5.85 (s, 2 H) (H-C(5/II-IV)); 5.70 (d, 1)J = 3.3, H-C(1'/IV); 5.65 (d, J = 2.5), 5.63 (d, J = 2.5) (H-C(1'/II-III)); 5.49 $(d, J \approx 2.5, 0.1 \text{ H})$, 5.43 $(d, J \approx 2.5, 0.1 \text{ H})$ $J \approx 2.5, 0.9 \text{ H}$) (H–C(1'/I)); 4.86 – 4.65 (m, partially erased due to irradiation of the HDO signal, H–C(2'/ I-IV), H-C(3'/I-IV)); 4.56 (br. s, CH₂-C(6/I)); 4.43-4.34 (m, H-C(4'/I-IV)); 3.97-3.66 (m, 2 H–C(5'/IV), CH₂–C(6/II–IV)); 3.05–2.80 (*m*, 2 H–C(5'/I–III)). ¹³C-NMR (150 MHz, (D₆)DMSO; assignments based on a DQF-COSY, HMBC, and HSQC spectrum): 165.50 (s, C(4/I)); 164.80, 164.72, 164.68 (3s, C(4/II-IV)); 157.00 (s, C(6/I)); 156.07, 155.94 (2 C), 155.90 (3s, C(2/I-IV)); 152.05, 151.86, 151.76 (3s, C(6/II-IV)); 96.92 (2 C), 96.67 (2d, C(5/II-IV)); 92.60 (d, C(5/I)); 92.49, 92.37, 92.31 (3d, C(1'/I-III); 91.54 (d, C(1'/IV)); 84.90 (d, C(4'/IV)); 84.51, 84.34, 83.76 (3d, C(4'/I-III)); 73.13, 73.02, 72.95 (3d, C(3'/I-III)); 71.33, 71.29, 71.13 (2 C) (3d, C(2'/I-IV)); 70.04 (d, C(3'/IV)); 62.18 (t, C(5'/ IV)); 58.84 (t, CH_2 –C(6/I)); 32.53, 32.29 (2 C) (2t, C(5'/I-III)); 32.08, 31.88 (2 C) (2t, CH_2 –C(6/II-IV)). HR-MALDI-MS: 1109.2756 (100, $[M + Na]^+$, $C_{40}H_{54}N_{12}NaO_{18}S_3^+$; calc. 1109.2733).

REFERENCES

- [1] A. Ritter, D. Egli, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 673.
- [2] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861.
- [3] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 864.
- [4] A. J. Matthews, P. K. Bhardwaj, A. Vasella, *Helv. Chim. Acta* 2004, 87, 2273; A. J. Matthews, P. K. Bhardwaj, A. Vasella, *Chem. Commun.* 2003, 950.
- [5] K. Chiesa, A. Shvoryna, B. Bernet, A. Vasella, Helv. Chim. Acta 2010, 93, 668.
- [6] K. Chiesa, B. Bernet, A. Vasella, Helv. Chim. Acta 2010, 93, 1822.
- [7] N. Bogliotti, B. Bernet, A. Vasella, Helv. Chim. Acta 2010, 93, 659.
- [8] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 891.
- [9] B. Bernet, Z. Johar, A. Ritter, B. Jaun, A. Vasella, Helv. Chim. Acta 2009, 92, 2596.
- [10] C. R. Allerson, S. L. Chen, G. L. Verdine, J. Am. Chem. Soc. 1997, 119, 7423.
- [11] G. H. Jones, M. Taniguchi, D. Tegg, J. G. Moffatt, J. Org. Chem. 1979, 44, 1309; P. S. Ludwig, R. A. Schwendener, H. Schott, Synthesis 2002, 2387.
- [12] H. Wetter, K. Oertle, Tetrahedron Lett. 1985, 26, 5515.
- [13] M. Aso, T. Ikeno, K. Norihisa, M. Tanaka, N. Koga, H. Suemune, J. Org. Chem. 2001, 66, 3513.
- [14] M. C. Pirrung, S. W. Shuey, D. C. Lever, L. Fallon, Bioorg. Med. Chem. Lett. 1994, 4, 1345.
- [15] Z. Huang, S. A. Benner, J. Org. Chem. 2002, 67, 3996.
- [16] V. T. Ravikumar, A. H. Krotz, D. L. Cole, *Tetrahedron Lett.* **1995**, *36*, 6587.
- [17] H. Köster, K. Kulikowski, T. Liese, W. Heikens, V. Kohli, *Tetrahedron* 1981, 37, 363.
- [18] O. Wallace, B. D. M. Springer, Tetrahedron Lett. 1998, 39, 2693.
- [19] S. Eppacher, N. Solladié, B. Bernet, A. Vasella, Helv. Chim. Acta 2000, 83, 1311.
- [20] R. Busson, L. Kerremans, A. Van Aerschot, M. Peeters, N. Blaton, P. Herdewijn, Nucleosides Nucleotides 1999, 18, 1079.
- [21] K. Miyata, A. Kobori, R. Tamamushi, A. Ohkubo, H. Taguchi, K. Seio, M. Sekine, Eur. J. Org. Chem. 2006, 3626.
- [22] Y. Kyogoku, R. C. Lord, A. Rich, Biochim. Biophys. Acta 1969, 179, 10.
- [23] P. Carmona, M. Molina, A. Lasagabaster, R. Escobar, A. Ben Altabef, J. Phys. Chem. 1993, 97, 9519.
- [24] J. Sartorius, H. J. Schneider, Chem. Eur. J. 1996, 2, 1446.

- [25] L. D. Williams, B. Chawla, B. R. Shaw, Biopolymers 1987, 26, 591.
- [26] Y. Kyogoku, R. C. Lord, A. Rich, J. Am. Chem. Soc. 1967, 89, 496.
- [27] A. Ritter, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 1675.
- [28] P. Hobza, J. Šponer, M. Pólašek, J. Am. Chem. Soc. 1995, 117, 792; P. Hobza, J. Šponer, Chem. Rev. 1999, 99, 3247.
- [29] H. Rosemeyer, G. Tóth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth, F. Seela, J. Org. Chem. 1990, 55, 5784.
- [30] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, C. Caufield, M. Lipton, G. Chang, T. Hendrickson, W. C. Still, J. Comput. Chem. 1990, 11, 440.
- [31] J. Castro-Pichel, M. T. García-López, F. G. De las Heras, R. Herranz, Liebigs Ann. Chem. 1988, 737; A. A.-H. Abdel-Rahman, E. S. H. El Ashry, Synlett 2002, 2043; Y. Xu, H. Jin, Z. Yang, L. Zhang, L. Zhang, Tetrahedron 2009, 65, 5228.
- [32] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688.
- [33] J. Ø. Duus, C. H. Gotfredsen, K. Bock, Chem. Rev. 2000, 100, 4589.
- [34] A. J. Adler, L. Grossman, G. D. Fasman, Biochemistry 1968, 7, 3836.
- [35] H. Kang, P. J. Chou, W. C. Johnson, D. Weller, S. B. Huang, J. E. Summerton, Biopolymers 1992, 32, 1351.
- [36] N. Ogasawara, Y. Inoue, J. Am. Chem. Soc. 1976, 98, 7054.
- [37] M. Raszka, N. O. Kaplan, Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 2025.
- [38] G. N. Wheeler, A. W. Brändli, Dev. Dyn. 2009, 238, 1287.
- [39] R. E. Kälin, N. E. Bänziger-Tobler, M. Detmar, A. W. Brändli, *Blood* 2009, *114*, 1110.
- [40] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
- [41] G. M. Sheldrick, SHELXL97, Program for Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997.

Received December 9, 2010